bufstream/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A crate for separately buffered streams.
//!
//! This crate provides a `BufStream` type which provides buffering of both the
//! reading and writing halves of a `Read + Write` type. Each half is completely
//! independently buffered of the other, which may not always be desired. For
//! example `BufStream<File>` may have surprising semantics.
//!
//! # Usage
//!
//! ```toml
//! [dependencies]
//! bufstream = "0.1"
//! ```
//!
//! ```no_run
//! use std::io::prelude::*;
//! use std::net::TcpStream;
//! use bufstream::BufStream;
//!
//!
//! let stream = TcpStream::connect("localhost:4000").unwrap();
//! let mut buf = BufStream::new(stream);
//! buf.read(&mut [0; 1024]).unwrap();
//! buf.write(&[0; 1024]).unwrap();
//! ```
//!
//! # Async I/O
//!
//! This crate optionally can support async I/O streams with the [Tokio stack] via
//! the `tokio` feature of this crate:
//!
//! [Tokio stack]: https://tokio.rs/
//!
//! ```toml
//! bufstream = { version = "0.2", features = ["tokio"] }
//! ```
//!
//! All methods are internally capable of working with streams that may return
//! [`ErrorKind::WouldBlock`] when they're not ready to perform the particular
//! operation.
//!
//! [`ErrorKind::WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html
//!
//! Note that care needs to be taken when using these objects, however. The
//! Tokio runtime, in particular, requires that data is fully flushed before
//! dropping streams. For compatibility with blocking streams all streams are
//! flushed/written when they are dropped, and this is not always a suitable
//! time to perform I/O. If I/O streams are flushed before drop, however, then
//! these operations will be a noop.
#[cfg(feature = "tokio")] extern crate futures;
#[cfg(feature = "tokio")] #[macro_use] extern crate tokio_io;
use std::fmt;
use std::io::prelude::*;
use std::io::{self, BufReader, BufWriter};
use std::error;
#[cfg(feature = "tokio")] use futures::Poll;
#[cfg(feature = "tokio")] use tokio_io::{AsyncRead, AsyncWrite};
const DEFAULT_BUF_SIZE: usize = 8 * 1024;
/// Wraps a Stream and buffers input and output to and from it.
///
/// It can be excessively inefficient to work directly with a `Read+Write`. For
/// example, every call to `read` or `write` on `TcpStream` results in a system
/// call. A `BufStream` keeps in memory buffers of data, making large,
/// infrequent calls to `read` and `write` on the underlying `Read+Write`.
///
/// The output buffer will be written out when this stream is dropped.
#[derive(Debug)]
pub struct BufStream<S: Write> {
inner: BufReader<InternalBufWriter<S>>
}
/// An error returned by `into_inner` which combines an error that
/// happened while writing out the buffer, and the buffered writer object
/// which may be used to recover from the condition.
#[derive(Debug)]
pub struct IntoInnerError<W>(W, io::Error);
impl<W> IntoInnerError<W> {
/// Returns the error which caused the call to `into_inner()` to fail.
///
/// This error was returned when attempting to write the internal buffer.
pub fn error(&self) -> &io::Error { &self.1 }
/// Returns the buffered writer instance which generated the error.
///
/// The returned object can be used for error recovery, such as
/// re-inspecting the buffer.
pub fn into_inner(self) -> W { self.0 }
}
impl<W> From<IntoInnerError<W>> for io::Error {
fn from(iie: IntoInnerError<W>) -> io::Error { iie.1 }
}
impl<W: fmt::Debug> error::Error for IntoInnerError<W> {
fn description(&self) -> &str {
error::Error::description(self.error())
}
}
impl<W> fmt::Display for IntoInnerError<W> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.error().fmt(f)
}
}
struct InternalBufWriter<W: Write>(Option<BufWriter<W>>);
impl<W: Write> InternalBufWriter<W> {
fn get_ref(&self) -> &BufWriter<W> {
self.0.as_ref().unwrap()
}
fn get_mut(&mut self) -> &mut BufWriter<W> {
self.0.as_mut().unwrap()
}
}
impl<W: Read + Write> Read for InternalBufWriter<W> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.get_mut().get_mut().read(buf)
}
}
impl<W: Write + fmt::Debug> fmt::Debug for InternalBufWriter<W> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.get_ref().fmt(f)
}
}
impl<S: Read + Write> BufStream<S> {
/// Creates a new buffered stream with explicitly listed capacities for the
/// reader/writer buffer.
pub fn with_capacities(reader_cap: usize, writer_cap: usize, inner: S)
-> BufStream<S> {
let writer = BufWriter::with_capacity(writer_cap, inner);
let internal_writer = InternalBufWriter(Some(writer));
let reader = BufReader::with_capacity(reader_cap, internal_writer);
BufStream { inner: reader }
}
/// Creates a new buffered stream with the default reader/writer buffer
/// capacities.
pub fn new(inner: S) -> BufStream<S> {
BufStream::with_capacities(DEFAULT_BUF_SIZE, DEFAULT_BUF_SIZE, inner)
}
/// Gets a reference to the underlying stream.
pub fn get_ref(&self) -> &S {
self.inner.get_ref().get_ref().get_ref()
}
/// Gets a mutable reference to the underlying stream.
///
/// # Warning
///
/// It is inadvisable to read directly from or write directly to the
/// underlying stream.
pub fn get_mut(&mut self) -> &mut S {
self.inner.get_mut().get_mut().get_mut()
}
/// Unwraps this `BufStream`, returning the underlying stream.
///
/// The internal write buffer is written out before returning the stream.
/// Any leftover data in the read buffer is lost.
pub fn into_inner(mut self) -> Result<S, IntoInnerError<BufStream<S>>> {
let e = {
let InternalBufWriter(ref mut w) = *self.inner.get_mut();
let (e, w2) = match w.take().unwrap().into_inner() {
Ok(s) => return Ok(s),
Err(err) => {
(io::Error::new(err.error().kind(), err.error().to_string()),
err.into_inner())
}
};
*w = Some(w2);
e
};
Err(IntoInnerError(self, e))
}
}
impl<S: Read + Write> BufRead for BufStream<S> {
fn fill_buf(&mut self) -> io::Result<&[u8]> { self.inner.fill_buf() }
fn consume(&mut self, amt: usize) { self.inner.consume(amt) }
fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> io::Result<usize> {
self.inner.read_until(byte, buf)
}
fn read_line(&mut self, string: &mut String) -> io::Result<usize> {
self.inner.read_line(string)
}
}
impl<S: Read + Write> Read for BufStream<S> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.inner.read(buf)
}
}
impl<S: Read + Write> Write for BufStream<S> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.inner.get_mut().0.as_mut().unwrap().write(buf)
}
fn flush(&mut self) -> io::Result<()> {
self.inner.get_mut().0.as_mut().unwrap().flush()
}
}
#[cfg(feature = "tokio")]
impl<S: AsyncRead + AsyncWrite> AsyncRead for BufStream<S> {}
#[cfg(feature = "tokio")]
impl<S: AsyncRead + AsyncWrite> AsyncWrite for BufStream<S> {
fn shutdown(&mut self) -> Poll<(), io::Error> {
try_nb!(self.flush());
let mut inner = self.inner.get_mut().0.as_mut().unwrap();
inner.shutdown()
}
}
#[cfg(test)]
mod tests {
use std::io::prelude::*;
use std::io;
use super::BufStream;
// This is just here to make sure that we don't infinite loop in the
// newtype struct autoderef weirdness
#[test]
fn test_buffered_stream() {
struct S;
impl Write for S {
fn write(&mut self, b: &[u8]) -> io::Result<usize> { Ok(b.len()) }
fn flush(&mut self) -> io::Result<()> { Ok(()) }
}
impl Read for S {
fn read(&mut self, _: &mut [u8]) -> io::Result<usize> { Ok(0) }
}
let mut stream = BufStream::new(S);
assert_eq!(stream.read(&mut [0; 10]).unwrap(), 0);
stream.write(&[0; 10]).unwrap();
stream.flush().unwrap();
}
}