conv/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*!
This crate provides a number of conversion traits with more specific semantics than those provided by `as` or `From`/`Into`.
The goal with the traits provided here is to be more specific about what generic code can rely on, as well as provide reasonably self-describing alternatives to the standard `From`/`Into` traits. For example, the although `T: From<U>` might be satisfied, it imposes no restrictions on the *kind* of conversion being implemented. As such, the traits in this crate try to be very specific about what conversions are allowed. This makes them less generally applicable, but more useful where they *do* apply.
In addition, `From`/`Into` requires all conversions to succeed or panic. All conversion traits in this crate define an associated error type, allowing code to react to failed conversions as appropriate.
<style type="text/css">
.link-block { font-family: "Fira Sans"; }
.link-block > p { display: inline-block; }
.link-block > p > strong { font-weight: 500; margin-right: 1em; }
.link-block > ul { display: inline-block; padding: 0; list-style: none; }
.link-block > ul > li {
font-size: 0.8em;
background-color: #eee;
border: 1px solid #ccc;
padding: 0.3em;
display: inline-block;
}
</style>
<span></span><div class="link-block">
**Links**
* [Latest Release](https://crates.io/crates/scan-rules/)
* [Latest Docs](https://danielkeep.github.io/rust-scan-rules/doc/scan_rules/index.html)
* [Repository](https://github.com/DanielKeep/rust-scan-rules)
<span></span></div>
## Compatibility
`conv` is compatible with Rust 1.2 and higher.
## Change Log
### v0.3.2
- Added integer ↔ `char` conversions.
- Added missing `isize`/`usize` → `f32`/`f64` conversions.
- Fixed the error type of `i64` → `usize` for 64-bit targets.
### v0.3.1
- Change to `unwrap_ok` for better codegen (thanks bluss).
- Fix for Rust breaking change (code in question was dodgy anyway; thanks m4rw3r).
### v0.3.0
- Added an `Error` constraint to all `Err` associated types. This will break any user-defined conversions where the `Err` type does not implement `Error`.
- Renamed the `Overflow` and `Underflow` errors to `PosOverflow` and `NegOverflow` respectively. In the context of floating point conversions, "underflow" usually means the value was too close to zero to correctly represent.
### v0.2.1
- Added `ConvUtil::into_as<Dst>` as a shortcut for `Into::<Dst>::into`.
- Added `#[inline]` attributes.
- Added `Saturate::saturate`, which can saturate `Result`s arising from over/underflow.
### v0.2.0
- Changed all error types to include the original input as payload. This breaks pretty much *everything*. Sorry about that. On the bright side, there's now no downside to using the conversion traits for non-`Copy` types.
- Added the normal rounding modes for float → int approximations: `RoundToNearest`, `RoundToNegInf`, `RoundToPosInf`, and `RoundToZero`.
- `ApproxWith` is now subsumed by a pair of extension traits (`ConvUtil` and `ConvAsUtil`), that also have shortcuts for `TryInto` and `ValueInto` so that you can specify the destination type on the method.
# Overview
The following traits are used to define various conversion semantics:
- [`ApproxFrom`](./trait.ApproxFrom.html)/[`ApproxInto`](./trait.ApproxInto.html) - approximate conversions, with selectable approximation scheme (see [`ApproxScheme`](./trait.ApproxScheme.html)).
- [`TryFrom`](./trait.TryFrom.html)/[`TryInto`](./trait.TryInto.html) - general, potentially failing value conversions.
- [`ValueFrom`](./trait.ValueFrom.html)/[`ValueInto`](./trait.ValueInto.html) - exact, value-preserving conversions.
When *defining* a conversion, try to implement the `*From` trait variant where possible. When *using* a conversion, try to depend on the `*Into` trait variant where possible. This is because the `*Into` traits automatically use `*From` implementations, but not the reverse. Implementing `*From` and using `*Into` ensures conversions work in as many contexts as possible.
These extension methods are provided to help with some common cases:
- [`ConvUtil::approx_as<Dst>`](./trait.ConvUtil.html#method.approx_as) - approximates to `Dst` with the `DefaultApprox` scheme.
- [`ConvUtil::approx_as_by<Dst, S>`](./trait.ConvUtil.html#method.approx_as_by) - approximates to `Dst` with the scheme `S`.
- [`ConvUtil::into_as<Dst>`](./trait.ConvUtil.html#method.into_as) - converts to `Dst` using `Into::into`.
- [`ConvUtil::try_as<Dst>`](./trait.ConvUtil.html#method.try_as) - converts to `Dst` using `TryInto::try_into`.
- [`ConvUtil::value_as<Dst>`](./trait.ConvUtil.html#method.value_as) - converts to `Dst` using `ValueInto::value_into`.
- [`ConvAsUtil::approx`](./trait.ConvAsUtil.html#method.approx) - approximates to an inferred destination type with the `DefaultApprox` scheme.
- [`ConvAsUtil::approx_by<S>`](./trait.ConvAsUtil.html#method.approx_by) - approximates to an inferred destination type with the scheme `S`.
- [`Saturate::saturate`](./errors/trait.Saturate.html#tymethod.saturate) - saturates on overflow.
- [`UnwrapOk::unwrap_ok`](./errors/trait.UnwrapOk.html#tymethod.unwrap_ok) - unwraps results from conversions that cannot fail.
- [`UnwrapOrInf::unwrap_or_inf`](./errors/trait.UnwrapOrInf.html#tymethod.unwrap_or_inf) - saturates to ±∞ on failure.
- [`UnwrapOrInvalid::unwrap_or_invalid`](./errors/trait.UnwrapOrInvalid.html#tymethod.unwrap_or_invalid) - substitutes the target type's "invalid" sentinel value on failure.
- [`UnwrapOrSaturate::unwrap_or_saturate`](./errors/trait.UnwrapOrSaturate.html#tymethod.unwrap_or_saturate) - saturates to the maximum or minimum value of the target type on failure.
A macro is provided to assist in implementing conversions:
- [`TryFrom!`](./macros/index.html#tryfrom!) - derives an implementation of [`TryFrom`](./trait.TryFrom.html).
If you are implementing your own types, you may also be interested in the traits contained in the [`misc`](./misc/index.html) module.
## Provided Implementations
The crate provides several blanket implementations:
- `*From<A> for A` (all types can be converted from and into themselves).
- `*Into<Dst> for Src where Dst: *From<Src>` (`*From` implementations imply a matching `*Into` implementation).
Conversions for the builtin numeric (integer and floating point) types are provided. In general, `ValueFrom` conversions exist for all pairs except for float → integer (since such a conversion is generally unlikely to *exactly* succeed) and `f64 → f32` (for the same reason). `ApproxFrom` conversions with the `DefaultApprox` scheme exist between all pairs. `ApproxFrom` with the `Wrapping` scheme exist between integers.
## Errors
A number of error types are defined in the [`errors`](./errors/index.html) module. Generally, conversions use whichever error type most *narrowly* defines the kinds of failures that can occur. For example:
- `ValueFrom<u8> for u16` cannot possibly fail, and as such it uses `NoError`.
- `ValueFrom<i8> for u16` can *only* fail with a negative overflow, thus it uses the `NegOverflow` type.
- `ValueFrom<i32> for u16` can overflow in either direction, hence it uses `RangeError`.
- Finally, `ApproxFrom<f32> for u16` can overflow (positive or negative), or attempt to convert NaN; `FloatError` covers those three cases.
Because there are *numerous* error types, the `GeneralError` enum is provided. `From<E, T> for GeneralError<T>` exists for each error type `E<T>` defined by this crate (even for `NoError`!), allowing errors to be translated automatically by `try!`. In fact, all errors can be "expanded" to *all* more general forms (*e.g.* `NoError` → `NegOverflow`, `PosOverflow` → `RangeError` → `FloatError`).
Aside from `NoError`, the various error types wrap the input value that you attempted to convert. This is so that non-`Copy` types do not need to be pre-emptively cloned prior to conversion, just in case the conversion fails. A downside is that this means there are many, *many* incompatible error types.
To help alleviate this, there is also `GeneralErrorKind`, which is simply `GeneralError<T>` without the payload, and all errors can be converted into it directly.
The reason for not just using `GeneralErrorKind` in the first place is to statically reduce the number of potential error cases you need to deal with. It also allows the `Unwrap*` extension traits to be defined *without* the possibility for runtime failure (*e.g.* you cannot use `unwrap_or_saturate` with a `FloatError`, because what do you do if the error is `NotANumber`; saturate to max or to min? Or panic?).
# Examples
```
# extern crate conv;
# use conv::*;
# fn main() {
// This *cannot* fail, so we can use `unwrap_ok` to discard the `Result`.
assert_eq!(u8::value_from(0u8).unwrap_ok(), 0u8);
// This *can* fail. Specifically, it can overflow toward negative infinity.
assert_eq!(u8::value_from(0i8), Ok(0u8));
assert_eq!(u8::value_from(-1i8), Err(NegOverflow(-1)));
// This can overflow in *either* direction; hence the change to `RangeError`.
assert_eq!(u8::value_from(-1i16), Err(RangeError::NegOverflow(-1)));
assert_eq!(u8::value_from(0i16), Ok(0u8));
assert_eq!(u8::value_from(256i16), Err(RangeError::PosOverflow(256)));
// We can use the extension traits to simplify this a little.
assert_eq!(u8::value_from(-1i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(0i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(256i16).unwrap_or_saturate(), 255u8);
// Obviously, all integers can be "approximated" using the default scheme (it
// doesn't *do* anything), but they can *also* be approximated with the
// `Wrapping` scheme.
assert_eq!(
<u8 as ApproxFrom<_, DefaultApprox>>::approx_from(400u16),
Err(PosOverflow(400)));
assert_eq!(
<u8 as ApproxFrom<_, Wrapping>>::approx_from(400u16),
Ok(144u8));
// This is rather inconvenient; as such, there are a number of convenience
// extension methods available via `ConvUtil` and `ConvAsUtil`.
assert_eq!(400u16.approx(), Err::<u8, _>(PosOverflow(400)));
assert_eq!(400u16.approx_by::<Wrapping>(), Ok::<u8, _>(144u8));
assert_eq!(400u16.approx_as::<u8>(), Err(PosOverflow(400)));
assert_eq!(400u16.approx_as_by::<u8, Wrapping>(), Ok(144));
// Integer -> float conversions *can* fail due to limited precision.
// Once the continuous range of exactly representable integers is exceeded, the
// provided implementations fail with overflow errors.
assert_eq!(f32::value_from(16_777_216i32), Ok(16_777_216.0f32));
assert_eq!(f32::value_from(16_777_217i32), Err(RangeError::PosOverflow(16_777_217)));
// Float -> integer conversions have to be done using approximations. Although
// exact conversions are *possible*, "advertising" this with an implementation
// is misleading.
//
// Note that `DefaultApprox` for float -> integer uses whatever rounding
// mode is currently active (*i.e.* whatever `as` would do).
assert_eq!(41.0f32.approx(), Ok(41u8));
assert_eq!(41.3f32.approx(), Ok(41u8));
assert_eq!(41.5f32.approx(), Ok(41u8));
assert_eq!(41.8f32.approx(), Ok(41u8));
assert_eq!(42.0f32.approx(), Ok(42u8));
assert_eq!(255.0f32.approx(), Ok(255u8));
assert_eq!(256.0f32.approx(), Err::<u8, _>(FloatError::PosOverflow(256.0)));
// Sometimes, it can be useful to saturate the conversion from float to
// integer directly, then account for NaN as input separately. The `Saturate`
// extension trait exists for this reason.
assert_eq!((-23.0f32).approx_as::<u8>().saturate(), Ok(0));
assert_eq!(302.0f32.approx_as::<u8>().saturate(), Ok(255u8));
assert!(std::f32::NAN.approx_as::<u8>().saturate().is_err());
// If you really don't care about the specific kind of error, you can just rely
// on automatic conversion to `GeneralErrorKind`.
fn too_many_errors() -> Result<(), GeneralErrorKind> {
assert_eq!({let r: u8 = try!(0u8.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0i8.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0i16.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0.0f32.approx()); r}, 0u8);
Ok(())
}
# let _ = too_many_errors();
# }
```
*/
#![deny(missing_docs)]
#[macro_use] extern crate custom_derive;
// Exported macros.
pub mod macros;
pub use errors::{
NoError, GeneralError, GeneralErrorKind, Unrepresentable,
NegOverflow, PosOverflow,
FloatError, RangeError, RangeErrorKind,
Saturate,
UnwrapOk, UnwrapOrInf, UnwrapOrInvalid, UnwrapOrSaturate,
};
use std::error::Error;
/**
Publicly re-exports the most generally useful set of items.
Usage of the prelude should be considered **unstable**. Although items will likely *not* be removed without bumping the major version, new items *may* be added, which could potentially cause name conflicts in user code.
*/
pub mod prelude {
pub use super::{
ApproxFrom, ApproxInto,
ValueFrom, ValueInto,
GeneralError, GeneralErrorKind,
Saturate,
UnwrapOk, UnwrapOrInf, UnwrapOrInvalid, UnwrapOrSaturate,
ConvUtil, ConvAsUtil,
RoundToNearest, RoundToZero, Wrapping,
};
}
macro_rules! as_item {
($($i:item)*) => {$($i)*};
}
macro_rules! item_for_each {
(
$( ($($arg:tt)*) ),* $(,)* => { $($exp:tt)* }
) => {
macro_rules! body {
$($exp)*
}
$(
body! { $($arg)* }
)*
};
}
pub mod errors;
pub mod misc;
mod impls;
/**
This trait is used to perform a conversion that is permitted to approximate the result, but *not* to wrap or saturate the result to fit into the destination type's representable range.
Where possible, prefer *implementing* this trait over `ApproxInto`, but prefer *using* `ApproxInto` for generic constraints.
# Details
All implementations of this trait must provide a conversion that can be separated into two logical steps: an approximation transform, and a representation transform.
The "approximation transform" step involves transforming the input value into an approximately equivalent value which is supported by the target type *without* taking the target type's representable range into account. For example, this might involve rounding or truncating a floating point value to an integer, or reducing the accuracy of a floating point value.
The "representation transform" step *exactly* rewrites the value from the source type's binary representation into the destination type's binary representation. This step *may not* transform the value in any way. If the result of the approximation is not representable, the conversion *must* fail.
The major reason for this formulation is to exactly define what happens when converting between floating point and integer types. Often, it is unclear what happens to floating point values beyond the range of the target integer type. Do they saturate, wrap, or cause a failure?
With this formulation, it is well-defined: if a floating point value is outside the representable range, the conversion fails. This allows users to distinguish between approximation and range violation, and act accordingly.
*/
pub trait ApproxFrom<Src, Scheme=DefaultApprox>: Sized where Scheme: ApproxScheme {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the given value into an approximately equivalent representation.
fn approx_from(src: Src) -> Result<Self, Self::Err>;
}
impl<Src, Scheme> ApproxFrom<Src, Scheme> for Src where Scheme: ApproxScheme {
type Err = NoError;
fn approx_from(src: Src) -> Result<Self, Self::Err> {
Ok(src)
}
}
/**
This is the dual of `ApproxFrom`; see that trait for information.
Where possible, prefer *using* this trait over `ApproxFrom` for generic constraints, but prefer *implementing* `ApproxFrom`.
*/
pub trait ApproxInto<Dst, Scheme=DefaultApprox> where Scheme: ApproxScheme {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the subject into an approximately equivalent representation.
fn approx_into(self) -> Result<Dst, Self::Err>;
}
impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Src
where
Dst: ApproxFrom<Src, Scheme>,
Scheme: ApproxScheme,
{
type Err = Dst::Err;
fn approx_into(self) -> Result<Dst, Self::Err> {
ApproxFrom::approx_from(self)
}
}
/**
This trait is used to mark approximation scheme types.
*/
pub trait ApproxScheme {}
/**
The "default" approximation scheme. This scheme does whatever would generally be expected of a lossy conversion, assuming no additional context or instruction is given.
This is a double-edged sword: it has the loosest semantics, but is far more likely to exist than more complicated approximation schemes.
*/
pub enum DefaultApprox {}
impl ApproxScheme for DefaultApprox {}
/**
This scheme is used to convert a value by "wrapping" it into a narrower range.
In abstract, this can be viewed as the opposite of rounding: rather than preserving the most significant bits of a value, it preserves the *least* significant bits of a value.
*/
pub enum Wrapping {}
impl ApproxScheme for Wrapping {}
/**
This scheme is used to convert a value by rounding it to the nearest representable value, with ties rounding away from zero.
*/
pub enum RoundToNearest {}
impl ApproxScheme for RoundToNearest {}
/**
This scheme is used to convert a value by rounding it toward negative infinity to the nearest representable value.
*/
pub enum RoundToNegInf {}
impl ApproxScheme for RoundToNegInf {}
/**
This scheme is used to convert a value by rounding it toward positive infinity to the nearest representable value.
*/
pub enum RoundToPosInf {}
impl ApproxScheme for RoundToPosInf {}
/**
This scheme is used to convert a value by rounding it toward zero to the nearest representable value.
*/
pub enum RoundToZero {}
impl ApproxScheme for RoundToZero {}
/**
This trait is used to perform a conversion between different semantic types which might fail.
Where possible, prefer *implementing* this trait over `TryInto`, but prefer *using* `TryInto` for generic constraints.
# Details
Typically, this should be used in cases where you are converting between values whose ranges and/or representations only partially overlap. That the conversion may fail should be a reasonably expected outcome. A standard example of this is converting from integers to enums of unitary variants.
*/
pub trait TryFrom<Src>: Sized {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the given value into the subject type.
fn try_from(src: Src) -> Result<Self, Self::Err>;
}
impl<Src> TryFrom<Src> for Src {
type Err = NoError;
fn try_from(src: Src) -> Result<Self, Self::Err> {
Ok(src)
}
}
/**
This is the dual of `TryFrom`; see that trait for information.
Where possible, prefer *using* this trait over `TryFrom` for generic constraints, but prefer *implementing* `TryFrom`.
*/
pub trait TryInto<Dst> {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the subject into the destination type.
fn try_into(self) -> Result<Dst, Self::Err>;
}
impl<Src, Dst> TryInto<Dst> for Src where Dst: TryFrom<Src> {
type Err = Dst::Err;
fn try_into(self) -> Result<Dst, Self::Err> {
TryFrom::try_from(self)
}
}
/**
This trait is used to perform an exact, value-preserving conversion.
Where possible, prefer *implementing* this trait over `ValueInto`, but prefer *using* `ValueInto` for generic constraints.
# Details
Implementations of this trait should be reflexive, associative and commutative (in the absence of conversion errors). That is, all possible cycles of `ValueFrom` conversions (for which each "step" has a defined implementation) should produce the same result, with a given value either being "round-tripped" exactly, or an error being produced.
*/
pub trait ValueFrom<Src>: Sized {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the given value into an exactly equivalent representation.
fn value_from(src: Src) -> Result<Self, Self::Err>;
}
impl<Src> ValueFrom<Src> for Src {
type Err = NoError;
fn value_from(src: Src) -> Result<Self, Self::Err> {
Ok(src)
}
}
/**
This is the dual of `ValueFrom`; see that trait for information.
Where possible, prefer *using* this trait over `ValueFrom` for generic constraints, but prefer *implementing* `ValueFrom`.
*/
pub trait ValueInto<Dst> {
/// The error type produced by a failed conversion.
type Err: Error;
/// Convert the subject into an exactly equivalent representation.
fn value_into(self) -> Result<Dst, Self::Err>;
}
impl<Src, Dst> ValueInto<Dst> for Src where Dst: ValueFrom<Src> {
type Err = Dst::Err;
fn value_into(self) -> Result<Dst, Self::Err> {
ValueFrom::value_from(self)
}
}
/**
This extension trait exists to simplify using various conversions.
If there is more than one implementation for a given type/trait pair, a simple call to `*_into` may not be uniquely resolvable. Due to the position of the type parameter (on the trait itself), it is cumbersome to specify the destination type. A similar problem exists for approximation schemes.
See also the [`ConvAsUtil`](./trait.ConvAsUtil.html) trait.
> **Note**: There appears to be a bug in `rustdoc`'s output. This trait is implemented *for all* types, though the methods are only available for types where the appropriate conversions are defined.
*/
pub trait ConvUtil {
/// Approximate the subject to a given type with the default scheme.
fn approx_as<Dst>(self) -> Result<Dst, Self::Err>
where Self: Sized + ApproxInto<Dst> {
self.approx_into()
}
/// Approximate the subject to a given type with a specific scheme.
fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err>
where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
{
self.approx_into()
}
/// Convert the subject to a given type.
fn into_as<Dst>(self) -> Dst
where Self: Sized + Into<Dst> {
self.into()
}
/// Attempt to convert the subject to a given type.
fn try_as<Dst>(self) -> Result<Dst, Self::Err>
where Self: Sized + TryInto<Dst> {
self.try_into()
}
/// Attempt a value conversion of the subject to a given type.
fn value_as<Dst>(self) -> Result<Dst, Self::Err>
where Self: Sized + ValueInto<Dst> {
self.value_into()
}
}
impl<T> ConvUtil for T {}
/**
This extension trait exists to simplify using various conversions.
If there is more than one `ApproxFrom` implementation for a given type, a simple call to `approx_into` may not be uniquely resolvable. Due to the position of the scheme parameter (on the trait itself), it is cumbersome to specify which scheme you wanted.
The destination type is inferred from context.
See also the [`ConvUtil`](./trait.ConvUtil.html) trait.
> **Note**: There appears to be a bug in `rustdoc`'s output. This trait is implemented *for all* types, though the methods are only available for types where the appropriate conversions are defined.
*/
pub trait ConvAsUtil<Dst> {
/// Approximate the subject with the default scheme.
fn approx(self) -> Result<Dst, Self::Err>
where Self: Sized + ApproxInto<Dst> {
self.approx_into()
}
/// Approximate the subject with a specific scheme.
fn approx_by<Scheme>(self) -> Result<Dst, Self::Err>
where
Self: Sized + ApproxInto<Dst, Scheme>,
Scheme: ApproxScheme,
{
self.approx_into()
}
}
impl<T, Dst> ConvAsUtil<Dst> for T {}