deflate64/huffman_tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
use crate::input_buffer::InputBuffer;
use crate::InternalErr;
#[derive(Debug)]
pub(crate) struct HuffmanTree {
code_lengths_length: u16,
table: [i16; 1 << Self::TABLE_BITS],
left: [i16; Self::MAX_CODE_LENGTHS * 2],
right: [i16; Self::MAX_CODE_LENGTHS * 2],
code_length_array: [u8; Self::MAX_CODE_LENGTHS],
}
// because of lifetime conflict, we cannot use simple accessor method.
macro_rules! get {
($self: ident.table) => {
$self.table[..]
};
($self: ident.left) => {
$self.left[..2 * $self.code_lengths_length as usize]
};
($self: ident.right) => {
$self.right[..2 * $self.code_lengths_length as usize]
};
($self: ident.code_length_array) => {
$self.code_length_array[..$self.code_lengths_length as usize]
};
}
impl HuffmanTree {
pub(crate) const MAX_CODE_LENGTHS: usize = 288;
pub(crate) const TABLE_BITS: u8 = 9;
pub(crate) const TABLE_BITS_MASK: usize = (1 << Self::TABLE_BITS) - 1;
pub(crate) const MAX_LITERAL_TREE_ELEMENTS: usize = 288;
pub(crate) const MAX_DIST_TREE_ELEMENTS: usize = 32;
pub(crate) const END_OF_BLOCK_CODE: usize = 256;
pub(crate) const NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS: usize = 19;
pub fn invalid() -> Self {
HuffmanTree {
code_lengths_length: Default::default(),
table: [0i16; 1 << Self::TABLE_BITS],
left: [0i16; Self::MAX_CODE_LENGTHS * 2],
right: [0i16; Self::MAX_CODE_LENGTHS * 2],
code_length_array: [0u8; Self::MAX_CODE_LENGTHS],
}
}
pub fn static_literal_length_tree() -> Self {
HuffmanTree::new(&Self::get_static_literal_tree_length()).unwrap()
}
pub fn static_distance_tree() -> Self {
HuffmanTree::new(&Self::get_static_distance_tree_length()).unwrap()
}
fn assert_code_lengths_len(len: usize) {
debug_assert!(
len == Self::MAX_LITERAL_TREE_ELEMENTS
|| len == Self::MAX_DIST_TREE_ELEMENTS
|| len == Self::NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS,
"we only expect three kinds of Length here"
);
}
pub fn new(code_lengths: &[u8]) -> Result<HuffmanTree, InternalErr> {
Self::assert_code_lengths_len(code_lengths.len());
let code_lengths_length = code_lengths.len();
// I need to find proof that left and right array will always be
// enough. I think they are.
let mut instance = Self {
table: [0; 1 << Self::TABLE_BITS],
left: [0; Self::MAX_CODE_LENGTHS * 2],
right: [0; Self::MAX_CODE_LENGTHS * 2],
code_lengths_length: code_lengths_length as u16,
code_length_array: {
let mut buffer = [0u8; Self::MAX_CODE_LENGTHS];
buffer[..code_lengths.len()].copy_from_slice(code_lengths);
buffer
},
};
instance.create_table()?;
Ok(instance)
}
pub fn new_in_place(&mut self, code_lengths: &[u8]) -> Result<(), InternalErr> {
Self::assert_code_lengths_len(code_lengths.len());
self.table.fill(0);
self.left.fill(0);
self.right.fill(0);
self.code_lengths_length = code_lengths.len() as u16;
self.code_length_array[..code_lengths.len()].copy_from_slice(code_lengths);
self.code_length_array[code_lengths.len()..].fill(0);
self.create_table()
}
// Generate the array contains huffman codes lengths for static huffman tree.
// The data is in RFC 1951.
fn get_static_literal_tree_length() -> [u8; Self::MAX_LITERAL_TREE_ELEMENTS] {
let mut literal_tree_length = [0u8; Self::MAX_LITERAL_TREE_ELEMENTS];
literal_tree_length[0..][..144].fill(8);
literal_tree_length[144..][..112].fill(9);
literal_tree_length[256..][..24].fill(7);
literal_tree_length[280..][..8].fill(8);
literal_tree_length
}
const fn get_static_distance_tree_length() -> [u8; Self::MAX_DIST_TREE_ELEMENTS] {
[5u8; Self::MAX_DIST_TREE_ELEMENTS]
}
fn bit_reverse(mut code: u32, mut length: usize) -> u32 {
let mut new_code = 0;
debug_assert!(length > 0 && length <= 16, "Invalid len");
while {
new_code |= code & 1;
new_code <<= 1;
code >>= 1;
length -= 1;
length > 0
} {}
new_code >> 1
}
fn calculate_huffman_code(&self) -> [u32; Self::MAX_LITERAL_TREE_ELEMENTS] {
let mut bit_length_count = [0u32; 17];
for &code_length in get!(self.code_length_array).iter() {
bit_length_count[code_length as usize] += 1;
}
bit_length_count[0] = 0; // clear count for length 0
let mut next_code = [0u32; 17];
let mut temp_code = 0u32;
for bits in 1..=16 {
temp_code = (temp_code + bit_length_count[bits - 1]) << 1;
next_code[bits] = temp_code;
}
let mut code = [0u32; Self::MAX_LITERAL_TREE_ELEMENTS];
for (i, &len) in get!(self.code_length_array).iter().enumerate() {
if len > 0 {
code[i] = Self::bit_reverse(next_code[len as usize], len as usize);
next_code[len as usize] += 1;
}
}
code
}
fn create_table(&mut self) -> Result<(), InternalErr> {
let code_array = self.calculate_huffman_code();
let mut avail = get!(self.code_length_array).len() as i16;
for (ch, &len) in get!(self.code_length_array).iter().enumerate() {
if len > 0 {
// start value (bit reversed)
let mut start = code_array[ch] as usize;
if len <= Self::TABLE_BITS {
// If a particular symbol is shorter than nine bits,
// then that symbol's translation is duplicated
// in all those entries that start with that symbol's bits.
// For example, if the symbol is four bits, then it's duplicated
// 32 times in a nine-bit table. If a symbol is nine bits long,
// it appears in the table once.
//
// Make sure that in the loop below, code is always
// less than table_size.
//
// On last iteration we store at array index:
// initial_start_at + (locs-1)*increment
// = initial_start_at + locs*increment - increment
// = initial_start_at + (1 << tableBits) - increment
// = initial_start_at + table_size - increment
//
// Therefore we must ensure:
// initial_start_at + table_size - increment < table_size
// or: initial_start_at < increment
//
let increment = 1 << len;
if start >= increment {
return Err(InternalErr::DataError); // InvalidHuffmanData
}
// Note the bits in the table are reverted.
let locs = 1 << (Self::TABLE_BITS - len);
for _ in 0..locs {
get!(self.table)[start] = ch as i16;
start += increment;
}
} else {
// For any code which has length longer than num_elements,
// build a binary tree.
let mut overflow_bits = len - Self::TABLE_BITS; // the nodes we need to represent the data.
let mut code_bit_mask = 1 << Self::TABLE_BITS; // mask to get current bit (the bits can't fit in the table)
// the left, right table is used to represent the
// the rest bits. When we got the first part (number bits.) and look at
// tbe table, we will need to follow the tree to find the real character.
// This is in place to avoid bloating the table if there are
// a few ones with long code.
let mut index = start & ((1 << Self::TABLE_BITS) - 1);
let mut array = &mut get!(self.table);
while {
let mut value = array[index];
if value == 0 {
// set up next pointer if this node is not used before.
array[index] = -avail; // use next available slot.
value = -avail;
avail += 1;
}
if value > 0 {
// prevent an IndexOutOfRangeException from array[index]
return Err(InternalErr::DataError); // InvalidHuffmanData
}
debug_assert!(
value < 0,
"create_table: Only negative numbers are used for tree pointers!"
);
if (start & code_bit_mask) == 0 {
// if current bit is 0, go change the left array
array = &mut get!(self.left);
} else {
// if current bit is 1, set value in the right array
array = &mut get!(self.right);
}
index = -value as usize; // go to next node
if index >= array.len() {
// prevent an IndexOutOfRangeException from array[index]
return Err(InternalErr::DataError); // InvalidHuffmanData
}
code_bit_mask <<= 1;
overflow_bits -= 1;
overflow_bits != 0
} {}
array[index] = ch as i16;
}
}
}
Ok(())
}
pub fn get_next_symbol(&self, input: &mut InputBuffer<'_>) -> Result<u16, InternalErr> {
assert_ne!(self.code_lengths_length, 0, "invalid table");
// Try to load 16 bits into input buffer if possible and get the bit_buffer value.
// If there aren't 16 bits available we will return all we have in the
// input buffer.
let bit_buffer = input.try_load_16bits();
if input.available_bits() == 0 {
// running out of input.
return Err(InternalErr::DataNeeded);
}
// decode an element
let mut symbol = self.table[bit_buffer as usize & Self::TABLE_BITS_MASK];
if symbol < 0 {
// this will be the start of the binary tree
// navigate the tree
let mut mask = 1 << Self::TABLE_BITS;
while {
symbol = -symbol;
if (bit_buffer & mask) == 0 {
symbol = get!(self.left)[symbol as usize];
} else {
symbol = get!(self.right)[symbol as usize];
}
mask <<= 1;
symbol < 0
} {}
}
debug_assert!(symbol >= 0);
let code_length = get!(self.code_length_array)[symbol as usize] as i32;
// huffman code lengths must be at least 1 bit long
if code_length <= 0 {
return Err(InternalErr::DataError); // InvalidHuffmanData
}
//
// If this code is longer than the # bits we had in the bit buffer (i.e.
// we read only part of the code), we can hit the entry in the table or the tree
// for another symbol. However the length of another symbol will not match the
// available bits count.
if code_length > input.available_bits() {
// We already tried to load 16 bits and maximum length is 15,
// so this means we are running out of input.
return Err(InternalErr::DataNeeded);
}
input.skip_bits(code_length);
Ok(symbol as u16)
}
}