deflate64/
inflater_managed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
use crate::huffman_tree::HuffmanTree;
use crate::input_buffer::{BitsBuffer, InputBuffer};
use crate::output_window::OutputWindow;
use crate::{array_copy, array_copy1, BlockType, InflateResult, InflaterState, InternalErr};
use std::cmp::min;

// Extra bits for length code 257 - 285.
static EXTRA_LENGTH_BITS: &[u8] = &[
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 16,
];

// The base length for length code 257 - 285.
// The formula to get the real length for a length code is lengthBase[code - 257] + (value stored in extraBits)
static LENGTH_BASE: &[u8] = &[
    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131,
    163, 195, 227, 3,
];

// The base distance for distance code 0 - 31
// The real distance for a distance code is  distanceBasePosition[code] + (value stored in extraBits)
static DISTANCE_BASE_POSITION: &[u16] = &[
    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
    2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 32769, 49153,
];

// code lengths for code length alphabet is stored in following order
static CODE_ORDER: &[u8] = &[
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15,
];

static STATIC_DISTANCE_TREE_TABLE: &[u8] = &[
    0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0c, 0x1c, 0x02, 0x12, 0x0a, 0x1a, 0x06, 0x16, 0x0e, 0x1e,
    0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0d, 0x1d, 0x03, 0x13, 0x0b, 0x1b, 0x07, 0x17, 0x0f, 0x1f,
];

// source: https://github.com/dotnet/runtime/blob/82dac28143be0740d795f434db9b70f61b3b7a04/src/libraries/System.IO.Compression/src/System/IO/Compression/DeflateManaged/OutputWindow.cs#L17
const TABLE_LOOKUP_LENGTH_MAX: usize = 65536;
const TABLE_LOOKUP_DISTANCE_MAX: usize = 65538;

/// The streaming Inflater for deflate64
///
/// This struct has big buffer so It's not recommended to move this struct.
#[derive(Debug)]
pub struct InflaterManaged {
    output: OutputWindow,
    bits: BitsBuffer,
    literal_length_tree: HuffmanTree,
    distance_tree: HuffmanTree,

    state: InflaterState,
    bfinal: bool,
    block_type: BlockType,

    // uncompressed block
    block_length_buffer: [u8; 4],
    block_length: usize,

    // compressed block
    length: usize,
    distance_code: u16,
    extra_bits: i32,

    loop_counter: u32,
    literal_length_code_count: u32,
    distance_code_count: u32,
    code_length_code_count: u32,
    code_array_size: u32,
    length_code: u16,

    code_list: [u8; HuffmanTree::MAX_LITERAL_TREE_ELEMENTS + HuffmanTree::MAX_DIST_TREE_ELEMENTS], // temporary array to store the code length for literal/Length and distance
    code_length_tree_code_length: [u8; HuffmanTree::NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS],
    deflate64: bool,
    code_length_tree: HuffmanTree,
    uncompressed_size: usize,
    current_inflated_count: usize,
}

impl InflaterManaged {
    /// Initializes Inflater
    #[allow(clippy::new_without_default)]
    #[inline]
    pub fn new() -> Self {
        Self::with_uncompressed_size(usize::MAX)
    }

    /// Initializes Inflater with expected uncompressed size.
    pub fn with_uncompressed_size(uncompressed_size: usize) -> Self {
        Self {
            output: OutputWindow::new(),
            bits: BitsBuffer::new(),

            literal_length_tree: HuffmanTree::invalid(),
            code_list: [0u8; HuffmanTree::MAX_LITERAL_TREE_ELEMENTS
                + HuffmanTree::MAX_DIST_TREE_ELEMENTS],
            code_length_tree_code_length: [0u8; HuffmanTree::NUMBER_OF_CODE_LENGTH_TREE_ELEMENTS],
            deflate64: true,
            code_length_tree: HuffmanTree::invalid(),
            uncompressed_size,
            state: InflaterState::ReadingBFinal, // start by reading BFinal bit
            bfinal: false,
            block_type: BlockType::Uncompressed,
            block_length_buffer: [0u8; 4],
            block_length: 0,
            length: 0,
            distance_code: 0,
            extra_bits: 0,
            loop_counter: 0,
            literal_length_code_count: 0,
            distance_code_count: 0,
            code_length_code_count: 0,
            code_array_size: 0,
            distance_tree: HuffmanTree::invalid(),
            length_code: 0,
            current_inflated_count: 0,
        }
    }

    /// Returns true if deflating finished
    ///
    /// This also returns true if this inflater is in error state
    pub fn finished(&self) -> bool {
        self.state == InflaterState::Done || self.state == InflaterState::DataErrored
    }

    /// Returns true if this inflater is in error state
    pub fn errored(&self) -> bool {
        self.state == InflaterState::DataErrored
    }

    /// The count of bytes currently inflater has in internal output buffer
    #[allow(dead_code)]
    pub fn available_output(&self) -> usize {
        self.output.available_bytes()
    }

    /// Try to decompress from `input` to `output`.
    ///
    /// This will decompress data until `output` is full, `input` is empty,
    /// the end if the deflate64 stream is hit, or there is error data in the deflate64 stream.
    pub fn inflate(&mut self, input: &[u8], mut output: &mut [u8]) -> InflateResult {
        // copy bytes from output to outputbytes if we have available bytes
        // if buffer is not filled up. keep decoding until no input are available
        // if decodeBlock returns false. Throw an exception.
        let mut result = InflateResult::new();
        let mut input = InputBuffer::new(self.bits, input);
        while 'while_loop: {
            let mut copied = 0;
            if self.uncompressed_size == usize::MAX {
                copied = self.output.copy_to(output);
            } else if self.uncompressed_size > self.current_inflated_count {
                let len = min(
                    output.len(),
                    self.uncompressed_size - self.current_inflated_count,
                );
                output = &mut output[..len];
                copied = self.output.copy_to(output);
                self.current_inflated_count += copied;
            } else {
                self.state = InflaterState::Done;
                self.output.clear_bytes_used();
            }
            if copied > 0 {
                output = &mut output[copied..];
                result.bytes_written += copied;
            }

            if output.is_empty() {
                // filled in the bytes buffer
                break 'while_loop false;
            }
            // decode will return false when more input is needed
            if self.errored() {
                result.data_error = true;
                break 'while_loop false;
            } else if self.finished() {
                break 'while_loop false;
            }
            match self.decode(&mut input) {
                Ok(()) => true,
                Err(InternalErr::DataNeeded) => false,
                Err(InternalErr::DataError) => {
                    self.state = InflaterState::DataErrored;
                    result.data_error = true;
                    false
                }
            }
        } {}

        self.bits = input.bits;
        result.bytes_consumed = input.read_bytes;
        result
    }

    fn decode(&mut self, input: &mut InputBuffer<'_>) -> Result<(), InternalErr> {
        let mut eob = false;
        let result;

        if self.errored() {
            return Err(InternalErr::DataError);
        } else if self.finished() {
            return Ok(());
        }

        if self.state == InflaterState::ReadingBFinal {
            // reading bfinal bit
            // Need 1 bit
            self.bfinal = input.get_bits(1)? != 0;
            self.state = InflaterState::ReadingBType;
        }

        if self.state == InflaterState::ReadingBType {
            // Need 2 bits
            self.state = InflaterState::ReadingBType;
            let bits = input.get_bits(2)?;

            self.block_type = BlockType::from_int(bits).ok_or(InternalErr::DataError)?;
            match self.block_type {
                BlockType::Dynamic => {
                    self.state = InflaterState::ReadingNumLitCodes;
                }
                BlockType::Static => {
                    self.literal_length_tree = HuffmanTree::static_literal_length_tree();
                    self.distance_tree = HuffmanTree::static_distance_tree();
                    self.state = InflaterState::DecodeTop;
                }
                BlockType::Uncompressed => {
                    self.state = InflaterState::UncompressedAligning;
                }
            }
        }

        if self.block_type == BlockType::Dynamic {
            if self.state < InflaterState::DecodeTop {
                // we are reading the header
                result = self.decode_dynamic_block_header(input);
            } else {
                result = self.decode_block(input, &mut eob); // this can returns true when output is full
            }
        } else if self.block_type == BlockType::Static {
            result = self.decode_block(input, &mut eob);
        } else if self.block_type == BlockType::Uncompressed {
            result = self.decode_uncompressed_block(input, &mut eob);
        } else {
            result = Err(InternalErr::DataError); // UnknownBlockType
        }

        //
        // If we reached the end of the block and the block we were decoding had
        // bfinal=1 (final block)
        //
        if eob && self.bfinal {
            self.state = InflaterState::Done;
        }
        result
    }

    fn decode_uncompressed_block(
        &mut self,
        input: &mut InputBuffer<'_>,
        end_of_block: &mut bool,
    ) -> Result<(), InternalErr> {
        *end_of_block = false;
        loop {
            match self.state {
                InflaterState::UncompressedAligning => {
                    input.skip_to_byte_boundary();
                    self.state = InflaterState::UncompressedByte1;
                    continue; //goto case InflaterState.UncompressedByte1;
                }
                InflaterState::UncompressedByte1
                | InflaterState::UncompressedByte2
                | InflaterState::UncompressedByte3
                | InflaterState::UncompressedByte4 => {
                    self.block_length_buffer
                        [(self.state - InflaterState::UncompressedByte1) as usize] =
                        input.get_bits(8)? as u8;
                    if self.state == InflaterState::UncompressedByte4 {
                        self.block_length = self.block_length_buffer[0] as usize
                            + (self.block_length_buffer[1] as usize) * 256;
                        let block_length_complement: i32 = self.block_length_buffer[2] as i32
                            + (self.block_length_buffer[3] as i32) * 256;

                        // make sure complement matches
                        if self.block_length as u16 != !block_length_complement as u16 {
                            return Err(InternalErr::DataError); // InvalidBlockLength
                        }
                    }

                    self.state = match self.state {
                        InflaterState::UncompressedByte1 => InflaterState::UncompressedByte2,
                        InflaterState::UncompressedByte2 => InflaterState::UncompressedByte3,
                        InflaterState::UncompressedByte3 => InflaterState::UncompressedByte4,
                        InflaterState::UncompressedByte4 => InflaterState::DecodingUncompressed,
                        _ => unreachable!(),
                    };
                }
                InflaterState::DecodingUncompressed => {
                    // Directly copy bytes from input to output.
                    let bytes_copied = self.output.copy_from(input, self.block_length);
                    self.block_length -= bytes_copied;

                    if self.block_length == 0 {
                        // Done with this block, need to re-init bit buffer for next block
                        self.state = InflaterState::ReadingBFinal;
                        *end_of_block = true;
                        return Ok(());
                    }

                    // We can fail to copy all bytes for two reasons:
                    //    Running out of Input
                    //    running out of free space in output window
                    if self.output.free_bytes() == 0 {
                        return Ok(());
                    }

                    return Err(InternalErr::DataNeeded);
                }
                _ => {
                    panic!("UnknownState");
                }
            }
        }
    }

    fn decode_block(
        &mut self,
        input: &mut InputBuffer<'_>,
        end_of_block_code_seen: &mut bool,
    ) -> Result<(), InternalErr> {
        *end_of_block_code_seen = false;

        let mut free_bytes = self.output.free_bytes(); // it is a little bit faster than frequently accessing the property
        while free_bytes > TABLE_LOOKUP_LENGTH_MAX {
            // With Deflate64 we can have up to a 64kb length, so we ensure at least that much space is available
            // in the OutputWindow to avoid overwriting previous unflushed output data.

            let mut symbol;
            match self.state {
                InflaterState::DecodeTop => {
                    // decode an element from the literal tree

                    // TODO: optimize this!!!
                    symbol = self.literal_length_tree.get_next_symbol(input)?;

                    #[allow(clippy::comparison_chain)]
                    if symbol < 256 {
                        // literal
                        self.output.write(symbol as u8);
                        free_bytes -= 1;
                    } else if symbol == 256 {
                        // end of block
                        *end_of_block_code_seen = true;
                        // Reset state
                        self.state = InflaterState::ReadingBFinal;
                        return Ok(());
                    } else {
                        // length/distance pair
                        symbol -= 257; // length code started at 257
                        if symbol < 8 {
                            symbol += 3; // match length = 3,4,5,6,7,8,9,10
                            self.extra_bits = 0;
                        } else if !self.deflate64 && symbol == 28 {
                            // extra bits for code 285 is 0
                            symbol = 258; // code 285 means length 258
                            self.extra_bits = 0;
                        } else {
                            if symbol as usize >= EXTRA_LENGTH_BITS.len() {
                                return Err(InternalErr::DataError); // GenericInvalidData
                            }
                            self.extra_bits = EXTRA_LENGTH_BITS[symbol as usize] as i32;
                            assert_ne!(self.extra_bits, 0, "We handle other cases separately!");
                        }
                        self.length = symbol as usize;

                        self.state = InflaterState::HaveInitialLength;
                        continue; //goto case InflaterState::HaveInitialLength;
                    }
                }
                InflaterState::HaveInitialLength => {
                    if self.extra_bits > 0 {
                        self.state = InflaterState::HaveInitialLength;
                        let bits = input.get_bits(self.extra_bits)?;

                        if self.length >= LENGTH_BASE.len() {
                            return Err(InternalErr::DataError); // GenericInvalidData
                        }
                        self.length = LENGTH_BASE[self.length] as usize + bits as usize;
                    }
                    self.state = InflaterState::HaveFullLength;
                    continue; // goto case InflaterState::HaveFullLength;
                }
                InflaterState::HaveFullLength => {
                    if self.block_type == BlockType::Dynamic {
                        let bits = self.distance_tree.get_next_symbol(input)?;
                        self.distance_code = bits;
                    } else {
                        // get distance code directly for static block
                        let bits = input.get_bits(5)?;
                        self.distance_code = STATIC_DISTANCE_TREE_TABLE[bits as usize] as u16;
                    }

                    self.state = InflaterState::HaveDistCode;
                    continue; //goto case InflaterState.HaveDistCode;
                }

                InflaterState::HaveDistCode => {
                    // To avoid a table lookup we note that for distanceCode > 3,
                    // extra_bits = (distanceCode-2) >> 1
                    let offset: usize;
                    if self.distance_code > 3 {
                        self.extra_bits = ((self.distance_code - 2) >> 1) as i32;
                        let bits = input.get_bits(self.extra_bits)?;
                        offset = DISTANCE_BASE_POSITION[self.distance_code as usize] as usize
                            + bits as usize;
                    } else {
                        offset = (self.distance_code + 1) as usize;
                    }

                    if self.length > TABLE_LOOKUP_LENGTH_MAX || offset > TABLE_LOOKUP_DISTANCE_MAX {
                        return Err(InternalErr::DataError);
                    }

                    self.output.write_length_distance(self.length, offset);
                    free_bytes -= self.length;
                    self.state = InflaterState::DecodeTop;
                }

                _ => {
                    //Debug.Fail("check why we are here!");
                    panic!("UnknownState");
                }
            }
        }

        Ok(())
    }

    // Format of the dynamic block header:
    //      5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
    //      5 Bits: HDIST, # of Distance codes - 1        (1 - 32)
    //      4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19)
    //
    //      (HCLEN + 4) x 3 bits: code lengths for the code length
    //          alphabet given just above, in the order: 16, 17, 18,
    //          0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
    //
    //          These code lengths are interpreted as 3-bit integers
    //          (0-7); as above, a code length of 0 means the
    //          corresponding symbol (literal/length or distance code
    //          length) is not used.
    //
    //      HLIT + 257 code lengths for the literal/length alphabet,
    //          encoded using the code length Huffman code
    //
    //       HDIST + 1 code lengths for the distance alphabet,
    //          encoded using the code length Huffman code
    //
    // The code length repeat codes can cross from HLIT + 257 to the
    // HDIST + 1 code lengths.  In other words, all code lengths form
    // a single sequence of HLIT + HDIST + 258 values.
    fn decode_dynamic_block_header(
        &mut self,
        input: &mut InputBuffer<'_>,
    ) -> Result<(), InternalErr> {
        'switch: loop {
            match self.state {
                InflaterState::ReadingNumLitCodes => {
                    let bits = input.get_bits(5)?;
                    self.literal_length_code_count = bits as u32 + 257;
                    self.state = InflaterState::ReadingNumDistCodes;
                    continue 'switch; //goto case InflaterState::ReadingNumDistCodes;
                }
                InflaterState::ReadingNumDistCodes => {
                    let bits = input.get_bits(5)?;
                    self.distance_code_count = bits as u32 + 1;
                    self.state = InflaterState::ReadingNumCodeLengthCodes;
                    continue 'switch; // goto case InflaterState::ReadingNumCodeLengthCodes;
                }
                InflaterState::ReadingNumCodeLengthCodes => {
                    let bits = input.get_bits(4)?;
                    self.code_length_code_count = bits as u32 + 4;
                    self.loop_counter = 0;
                    self.state = InflaterState::ReadingCodeLengthCodes;
                    continue 'switch; // goto case InflaterState::ReadingCodeLengthCodes;
                }
                InflaterState::ReadingCodeLengthCodes => {
                    while self.loop_counter < self.code_length_code_count {
                        let bits = input.get_bits(3)?;
                        self.code_length_tree_code_length
                            [CODE_ORDER[self.loop_counter as usize] as usize] = bits as u8;
                        self.loop_counter += 1;
                    }

                    for &code_oder in &CODE_ORDER[self.code_length_code_count as usize..] {
                        self.code_length_tree_code_length[code_oder as usize] = 0;
                    }

                    // create huffman tree for code length
                    self.code_length_tree
                        .new_in_place(&self.code_length_tree_code_length)?;
                    self.code_array_size =
                        self.literal_length_code_count + self.distance_code_count;
                    self.loop_counter = 0; // reset loop count

                    self.state = InflaterState::ReadingTreeCodesBefore;
                    continue 'switch; // goto case InflaterState::ReadingTreeCodesBefore;
                }
                InflaterState::ReadingTreeCodesBefore | InflaterState::ReadingTreeCodesAfter => {
                    while self.loop_counter < self.code_array_size {
                        if self.state == InflaterState::ReadingTreeCodesBefore {
                            self.length_code = self.code_length_tree.get_next_symbol(input)?;
                        }

                        // The alphabet for code lengths is as follows:
                        //  0 - 15: Represent code lengths of 0 - 15
                        //  16: Copy the previous code length 3 - 6 times.
                        //  The next 2 bits indicate repeat length
                        //         (0 = 3, ... , 3 = 6)
                        //      Example:  Codes 8, 16 (+2 bits 11),
                        //                16 (+2 bits 10) will expand to
                        //                12 code lengths of 8 (1 + 6 + 5)
                        //  17: Repeat a code length of 0 for 3 - 10 times.
                        //    (3 bits of length)
                        //  18: Repeat a code length of 0 for 11 - 138 times
                        //    (7 bits of length)
                        if self.length_code <= 15 {
                            self.code_list[self.loop_counter as usize] = self.length_code as u8;
                            self.loop_counter += 1;
                        } else {
                            let repeat_count: u32;
                            if self.length_code == 16 {
                                self.state = InflaterState::ReadingTreeCodesAfter;

                                if self.loop_counter == 0 {
                                    // can't have "prev code" on first code
                                    return Err(InternalErr::DataError);
                                }

                                let bits = input.get_bits(2)?;

                                let previous_code = self.code_list[self.loop_counter as usize - 1];
                                repeat_count = (bits + 3) as u32;

                                if self.loop_counter + repeat_count > self.code_array_size {
                                    //throw new InvalidDataException();
                                    return Err(InternalErr::DataError);
                                }

                                for _ in 0..repeat_count {
                                    self.code_list[self.loop_counter as usize] = previous_code;
                                    self.loop_counter += 1;
                                }
                            } else if self.length_code == 17 {
                                self.state = InflaterState::ReadingTreeCodesAfter;
                                let bits = input.get_bits(3)?;

                                repeat_count = (bits + 3) as u32;

                                if self.loop_counter + repeat_count > self.code_array_size {
                                    //throw new InvalidDataException();
                                    return Err(InternalErr::DataError);
                                }

                                for _ in 0..repeat_count {
                                    self.code_list[self.loop_counter as usize] = 0;
                                    self.loop_counter += 1;
                                }
                            } else {
                                // code == 18
                                self.state = InflaterState::ReadingTreeCodesAfter;
                                let bits = input.get_bits(7)?;

                                repeat_count = (bits + 11) as u32;

                                if self.loop_counter + repeat_count > self.code_array_size {
                                    //throw new InvalidDataException();
                                    return Err(InternalErr::DataError);
                                }

                                for _ in 0..repeat_count {
                                    self.code_list[self.loop_counter as usize] = 0;
                                    self.loop_counter += 1;
                                }
                            }
                        }
                        self.state = InflaterState::ReadingTreeCodesBefore; // we want to read the next code.
                    }
                    break 'switch;
                }
                _ => {
                    panic!("InvalidDataException: UnknownState");
                }
            }
        }

        let mut literal_tree_code_length = [0u8; HuffmanTree::MAX_LITERAL_TREE_ELEMENTS];
        let mut distance_tree_code_length = [0u8; HuffmanTree::MAX_DIST_TREE_ELEMENTS];

        // Create literal and distance tables
        array_copy(
            &self.code_list,
            &mut literal_tree_code_length,
            self.literal_length_code_count as usize,
        );
        array_copy1(
            &self.code_list,
            self.literal_length_code_count as usize,
            &mut distance_tree_code_length,
            0,
            self.distance_code_count as usize,
        );

        // Make sure there is an end-of-block code, otherwise how could we ever end?
        if literal_tree_code_length[HuffmanTree::END_OF_BLOCK_CODE] == 0 {
            return Err(InternalErr::DataError); // InvalidDataException
        }

        self.literal_length_tree
            .new_in_place(&literal_tree_code_length)?;
        self.distance_tree
            .new_in_place(&distance_tree_code_length)?;
        self.state = InflaterState::DecodeTop;
        Ok(())
    }
}