hickory_proto/udp/udp_client_stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// Copyright 2015-2016 Benjamin Fry <benjaminfry@me.com>
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// https://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// https://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use std::borrow::Borrow;
use std::fmt::{self, Display};
use std::marker::PhantomData;
use std::net::SocketAddr;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{Context, Poll};
use std::time::{Duration, SystemTime, UNIX_EPOCH};
use futures_util::{future::Future, stream::Stream};
use tracing::{debug, trace, warn};
use crate::error::ProtoError;
use crate::op::message::NoopMessageFinalizer;
use crate::op::{Message, MessageFinalizer, MessageVerifier};
use crate::udp::udp_stream::{NextRandomUdpSocket, UdpCreator, UdpSocket};
use crate::udp::{DnsUdpSocket, MAX_RECEIVE_BUFFER_SIZE};
use crate::xfer::{DnsRequest, DnsRequestSender, DnsResponse, DnsResponseStream, SerialMessage};
use crate::Time;
/// A UDP client stream of DNS binary packets
///
/// This stream will create a new UDP socket for every request. This is to avoid potential cache
/// poisoning during use by UDP based attacks.
#[must_use = "futures do nothing unless polled"]
pub struct UdpClientStream<S, MF = NoopMessageFinalizer>
where
S: Send,
MF: MessageFinalizer,
{
name_server: SocketAddr,
timeout: Duration,
is_shutdown: bool,
signer: Option<Arc<MF>>,
creator: UdpCreator<S>,
marker: PhantomData<S>,
}
impl<S: UdpSocket + Send + 'static> UdpClientStream<S, NoopMessageFinalizer> {
/// it is expected that the resolver wrapper will be responsible for creating and managing
/// new UdpClients such that each new client would have a random port (reduce chance of cache
/// poisoning)
///
/// # Return
///
/// a tuple of a Future Stream which will handle sending and receiving messages, and a
/// handle which can be used to send messages into the stream.
#[allow(clippy::new_ret_no_self)]
pub fn new(name_server: SocketAddr) -> UdpClientConnect<S, NoopMessageFinalizer> {
Self::with_timeout(name_server, Duration::from_secs(5))
}
/// Constructs a new UdpStream for a client to the specified SocketAddr.
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `timeout` - connection timeout
pub fn with_timeout(
name_server: SocketAddr,
timeout: Duration,
) -> UdpClientConnect<S, NoopMessageFinalizer> {
Self::with_bind_addr_and_timeout(name_server, None, timeout)
}
/// Constructs a new UdpStream for a client to the specified SocketAddr.
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `bind_addr` - the IP and port to connect from
/// * `timeout` - connection timeout
pub fn with_bind_addr_and_timeout(
name_server: SocketAddr,
bind_addr: Option<SocketAddr>,
timeout: Duration,
) -> UdpClientConnect<S, NoopMessageFinalizer> {
Self::with_timeout_and_signer_and_bind_addr(name_server, timeout, None, bind_addr)
}
}
impl<S: UdpSocket + Send + 'static, MF: MessageFinalizer> UdpClientStream<S, MF> {
/// Constructs a new UdpStream for a client to the specified SocketAddr.
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `timeout` - connection timeout
pub fn with_timeout_and_signer(
name_server: SocketAddr,
timeout: Duration,
signer: Option<Arc<MF>>,
) -> UdpClientConnect<S, MF> {
UdpClientConnect {
name_server,
timeout,
signer,
creator: Arc::new(|local_addr: _, server_addr: _| {
Box::pin(NextRandomUdpSocket::<S>::new(
&server_addr,
&Some(local_addr),
))
}),
marker: PhantomData::<S>,
}
}
/// Constructs a new UdpStream for a client to the specified SocketAddr.
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `timeout` - connection timeout
/// * `bind_addr` - the IP address and port to connect from
pub fn with_timeout_and_signer_and_bind_addr(
name_server: SocketAddr,
timeout: Duration,
signer: Option<Arc<MF>>,
bind_addr: Option<SocketAddr>,
) -> UdpClientConnect<S, MF> {
UdpClientConnect {
name_server,
timeout,
signer,
creator: Arc::new(move |local_addr: _, server_addr: _| {
Box::pin(NextRandomUdpSocket::<S>::new(
&server_addr,
&Some(bind_addr.unwrap_or(local_addr)),
))
}),
marker: PhantomData::<S>,
}
}
}
impl<S: DnsUdpSocket + Send, MF: MessageFinalizer> UdpClientStream<S, MF> {
/// Constructs a new UdpStream for a client to the specified SocketAddr.
///
/// # Arguments
///
/// * `name_server` - the IP and Port of the DNS server to connect to
/// * `signer` - optional final amendment
/// * `timeout` - connection timeout
/// * `creator` - function that binds a local address to a newly created UDP socket
pub fn with_creator(
name_server: SocketAddr,
signer: Option<Arc<MF>>,
timeout: Duration,
creator: UdpCreator<S>,
) -> UdpClientConnect<S, MF> {
UdpClientConnect {
name_server,
timeout,
signer,
creator,
marker: PhantomData::<S>,
}
}
}
impl<S: Send, MF: MessageFinalizer> Display for UdpClientStream<S, MF> {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
write!(formatter, "UDP({})", self.name_server)
}
}
/// creates random query_id, each socket is unique, no need for global uniqueness
fn random_query_id() -> u16 {
use rand::distributions::{Distribution, Standard};
let mut rand = rand::thread_rng();
Standard.sample(&mut rand)
}
impl<S: DnsUdpSocket + Send + 'static, MF: MessageFinalizer> DnsRequestSender
for UdpClientStream<S, MF>
{
fn send_message(&mut self, mut message: DnsRequest) -> DnsResponseStream {
if self.is_shutdown {
panic!("can not send messages after stream is shutdown")
}
// associated the ID for this request, b/c this connection is unique to socket port, the ID
// does not need to be globally unique
message.set_id(random_query_id());
let now = match SystemTime::now().duration_since(UNIX_EPOCH) {
Ok(now) => now.as_secs(),
Err(_) => return ProtoError::from("Current time is before the Unix epoch.").into(),
};
// TODO: truncates u64 to u32, error on overflow?
let now = now as u32;
let mut verifier = None;
if let Some(ref signer) = self.signer {
if signer.should_finalize_message(&message) {
match message.finalize::<MF>(signer.borrow(), now) {
Ok(answer_verifier) => verifier = answer_verifier,
Err(e) => {
debug!("could not sign message: {}", e);
return e.into();
}
}
}
}
// Get an appropriate read buffer size.
let recv_buf_size = MAX_RECEIVE_BUFFER_SIZE.min(message.max_payload() as usize);
let bytes = match message.to_vec() {
Ok(bytes) => bytes,
Err(err) => {
return err.into();
}
};
let message_id = message.id();
let message = SerialMessage::new(bytes, self.name_server);
debug!(
"final message: {}",
message
.to_message()
.expect("bizarre we just made this message")
);
let creator = self.creator.clone();
let addr = message.addr();
S::Time::timeout::<Pin<Box<dyn Future<Output = Result<DnsResponse, ProtoError>> + Send>>>(
self.timeout,
Box::pin(async move {
let socket: S = NextRandomUdpSocket::new_with_closure(&addr, creator).await?;
send_serial_message_inner(message, message_id, verifier, socket, recv_buf_size)
.await
}),
)
.into()
}
fn shutdown(&mut self) {
self.is_shutdown = true;
}
fn is_shutdown(&self) -> bool {
self.is_shutdown
}
}
// TODO: is this impl necessary? there's nothing being driven here...
impl<S: Send, MF: MessageFinalizer> Stream for UdpClientStream<S, MF> {
type Item = Result<(), ProtoError>;
fn poll_next(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
// Technically the Stream doesn't actually do anything.
if self.is_shutdown {
Poll::Ready(None)
} else {
Poll::Ready(Some(Ok(())))
}
}
}
/// A future that resolves to an UdpClientStream
pub struct UdpClientConnect<S, MF = NoopMessageFinalizer>
where
S: Send,
MF: MessageFinalizer,
{
name_server: SocketAddr,
timeout: Duration,
signer: Option<Arc<MF>>,
creator: UdpCreator<S>,
marker: PhantomData<S>,
}
impl<S: Send + Unpin, MF: MessageFinalizer> Future for UdpClientConnect<S, MF> {
type Output = Result<UdpClientStream<S, MF>, ProtoError>;
fn poll(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Self::Output> {
// TODO: this doesn't need to be a future?
Poll::Ready(Ok(UdpClientStream::<S, MF> {
name_server: self.name_server,
is_shutdown: false,
timeout: self.timeout,
signer: self.signer.take(),
creator: self.creator.clone(),
marker: PhantomData,
}))
}
}
async fn send_serial_message_inner<S: DnsUdpSocket + Send>(
msg: SerialMessage,
msg_id: u16,
verifier: Option<MessageVerifier>,
socket: S,
recv_buf_size: usize,
) -> Result<DnsResponse, ProtoError> {
let bytes = msg.bytes();
let addr = msg.addr();
let len_sent: usize = socket.send_to(bytes, addr).await?;
if bytes.len() != len_sent {
return Err(ProtoError::from(format!(
"Not all bytes of message sent, {} of {}",
len_sent,
bytes.len()
)));
}
// Create the receive buffer.
trace!("creating UDP receive buffer with size {recv_buf_size}");
let mut recv_buf = vec![0; recv_buf_size];
// TODO: limit the max number of attempted messages? this relies on a timeout to die...
loop {
let (len, src) = socket.recv_from(&mut recv_buf).await?;
// Copy the slice of read bytes.
let buffer: Vec<_> = Vec::from(&recv_buf[0..len]);
// compare expected src to received packet
let request_target = msg.addr();
// Comparing the IP and Port directly as internal information about the link is stored with the IpAddr, see https://github.com/hickory-dns/hickory-dns/issues/2081
if src.ip() != request_target.ip() || src.port() != request_target.port() {
warn!(
"ignoring response from {} because it does not match name_server: {}.",
src, request_target,
);
// await an answer from the correct NameServer
continue;
}
match Message::from_vec(&buffer) {
Ok(message) => {
// Validate the message id in the response matches the value chosen for the query.
if msg_id != message.id() {
// on wrong id, attempted poison?
warn!(
"expected message id: {} got: {}, dropped",
msg_id,
message.id()
);
continue;
}
// Validate the returned query name.
//
// This currently checks that each response query name was present in the original query, but not that
// every original question is present.
//
// References:
//
// RFC 1035 7.3:
//
// The next step is to match the response to a current resolver request.
// The recommended strategy is to do a preliminary matching using the ID
// field in the domain header, and then to verify that the question section
// corresponds to the information currently desired.
//
// RFC 1035 7.4:
//
// In general, we expect a resolver to cache all data which it receives in
// responses since it may be useful in answering future client requests.
// However, there are several types of data which should not be cached:
//
// ...
//
// - RR data in responses of dubious reliability. When a resolver
// receives unsolicited responses or RR data other than that
// requested, it should discard it without caching it.
let request_message = Message::from_vec(msg.bytes())?;
let request_queries = request_message.queries();
let response_queries = message.queries();
if !response_queries
.iter()
.all(|elem| request_queries.contains(elem))
{
warn!("detected forged question section: we expected '{request_queries:?}', but received '{response_queries:?}' from server {src}");
continue;
}
debug!("received message id: {}", message.id());
if let Some(mut verifier) = verifier {
return verifier(&buffer);
} else {
return Ok(DnsResponse::new(message, buffer));
}
}
Err(e) => {
// on errors deserializing, continue
warn!(
"dropped malformed message waiting for id: {} err: {}",
msg_id, e
);
continue;
}
}
}
}
#[cfg(test)]
#[cfg(feature = "tokio-runtime")]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use crate::tests::udp_client_stream_test;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
use tokio::{net::UdpSocket as TokioUdpSocket, runtime::Runtime};
#[test]
fn test_udp_client_stream_ipv4() {
let io_loop = Runtime::new().expect("failed to create tokio runtime");
udp_client_stream_test::<TokioUdpSocket, Runtime>(
IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)),
io_loop,
)
}
#[test]
fn test_udp_client_stream_ipv6() {
let io_loop = Runtime::new().expect("failed to create tokio runtime");
udp_client_stream_test::<TokioUdpSocket, Runtime>(
IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)),
io_loop,
)
}
}