imageproc/union_find.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
//! An implementation of disjoint set forests for union find.
/// Data structure for efficient union find.
pub struct DisjointSetForest {
/// Number of forest elements.
count: usize,
/// parent[i] is the index of the parent
/// of the element with index i. If parent[i] == i
/// then i is a root.
parent: Vec<usize>,
/// tree_size[i] is the size of the tree rooted at i.
tree_size: Vec<usize>,
}
impl DisjointSetForest {
/// Constructs forest of singletons with count elements.
pub fn new(count: usize) -> DisjointSetForest {
let parent: Vec<usize> = (0..count).collect();
let tree_size = vec![1_usize; count];
DisjointSetForest {
count,
parent,
tree_size,
}
}
/// Returns the number of trees in the forest.
pub fn num_trees(&self) -> usize {
self.parent
.iter()
.enumerate()
.fold(0, |acc, (i, p)| acc + if i == *p { 1 } else { 0 })
}
/// Returns index of the root of the tree containing i.
/// Needs mutable reference to self for path compression.
pub fn root(&mut self, i: usize) -> usize {
assert!(i < self.count);
let mut j = i;
loop {
unsafe {
let p = *self.parent.get_unchecked(j);
*self.parent.get_unchecked_mut(j) = *self.parent.get_unchecked(p);
if j == p {
break;
}
j = p;
}
}
j
}
/// Returns true if i and j are in the same tree.
/// Need mutable reference to self for path compression.
pub fn find(&mut self, i: usize, j: usize) -> bool {
assert!(i < self.count && j < self.count);
self.root(i) == self.root(j)
}
/// Unions the trees containing i and j.
pub fn union(&mut self, i: usize, j: usize) {
assert!(i < self.count && j < self.count);
let p = self.root(i);
let q = self.root(j);
if p == q {
return;
}
unsafe {
let p_size = *self.tree_size.get_unchecked(p);
let q_size = *self.tree_size.get_unchecked(q);
if p_size < q_size {
*self.parent.get_unchecked_mut(p) = q;
*self.tree_size.get_unchecked_mut(q) = p_size + q_size;
} else {
*self.parent.get_unchecked_mut(q) = p;
*self.tree_size.get_unchecked_mut(p) = p_size + q_size;
}
}
}
/// Returns the elements of each tree.
pub fn trees(&mut self) -> Vec<Vec<usize>> {
use std::collections::HashMap;
// Maps a tree root to the index of the set
// containing its children
let mut root_sets: HashMap<usize, usize> = HashMap::new();
let mut sets: Vec<Vec<usize>> = vec![];
for i in 0..self.count {
let root = self.root(i);
match root_sets.get(&root).cloned() {
Some(set_idx) => {
sets[set_idx].push(i);
}
None => {
let idx = sets.len();
let set = vec![i];
sets.push(set);
root_sets.insert(root, idx);
}
}
}
sets
}
}
#[cfg(test)]
mod tests {
use super::DisjointSetForest;
use ::test;
use rand::{rngs::StdRng, SeedableRng};
use rand_distr::{Distribution, Uniform};
#[test]
fn test_trees() {
// 3 4
// | / \
// 1 5 7
// / \ |
// 0 2 6
#[rustfmt::skip]
let mut forest = DisjointSetForest {
count: 8,
// element: 0, 1, 2, 3, 4, 5, 6, 7
parent: vec![1, 3, 1, 3, 4, 4, 5, 4],
tree_size: vec![1, 3, 1, 4, 4, 2, 1, 1],
};
assert_eq!(forest.trees(), vec![vec![0, 1, 2, 3], vec![4, 5, 6, 7]]);
}
#[test]
fn test_union_find_sequence() {
let mut forest = DisjointSetForest::new(6);
// 0 1 2 3 4 5
// 0, 1, 2, 3, 4, 5
assert_eq!(forest.parent, vec![0, 1, 2, 3, 4, 5]);
assert_eq!(forest.num_trees(), 6);
forest.union(0, 4);
// 0 1 2 3 5
// |
// 4
// 0, 1, 2, 3, 4, 5
assert_eq!(forest.parent, vec![0, 1, 2, 3, 0, 5]);
assert_eq!(forest.num_trees(), 5);
forest.union(1, 3);
// 0 1 2 5
// | |
// 4 3
// 0, 1, 2, 3, 4, 5
assert_eq!(forest.parent, vec![0, 1, 2, 1, 0, 5]);
assert_eq!(forest.num_trees(), 4);
forest.union(3, 2);
// 0 1 5
// | / \
// 4 3 2
// 0, 1, 2, 3, 4, 5
assert_eq!(forest.parent, vec![0, 1, 1, 1, 0, 5]);
assert_eq!(forest.num_trees(), 3);
forest.union(2, 4);
// 1 5
// / | \
// 0 3 2
// |
// 4
// 0, 1, 2, 3, 4, 5
assert_eq!(forest.parent, vec![1, 1, 1, 1, 0, 5]);
assert_eq!(forest.num_trees(), 2);
}
#[bench]
fn bench_disjoint_set_forest(b: &mut test::Bencher) {
let num_nodes = 500;
let num_edges = 20 * num_nodes;
let mut rng: StdRng = SeedableRng::seed_from_u64(1);
let uniform = Uniform::new(0, num_nodes);
let mut forest = DisjointSetForest::new(num_nodes);
b.iter(|| {
let mut count = 0;
while count < num_edges {
let u = uniform.sample(&mut rng);
let v = uniform.sample(&mut rng);
forest.union(u, v);
count += 1;
}
test::black_box(forest.num_trees());
});
}
}