imageproc/utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
//! Utils for testing and debugging.
use image::{
open, DynamicImage, GenericImage, GenericImageView, GrayImage, Luma, Pixel, Rgb, RgbImage,
};
use itertools::Itertools;
use std::cmp::{max, min};
use std::collections::HashSet;
use std::fmt;
use std::fmt::Write;
use std::path::Path;
use std::u32;
/// Helper for defining greyscale images.
///
/// Columns are separated by commas and rows by semi-colons.
/// By default a subpixel type of `u8` is used but this can be
/// overridden, as shown in the examples.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use image::{GrayImage, ImageBuffer, Luma};
///
/// // An empty grayscale image with pixel type Luma<u8>
/// let empty = gray_image!();
///
/// assert_pixels_eq!(
/// empty,
/// GrayImage::from_raw(0, 0, vec![]).unwrap()
/// );
///
/// // A single pixel grayscale image with pixel type Luma<u8>
/// let single_pixel = gray_image!(1);
///
/// assert_pixels_eq!(
/// single_pixel,
/// GrayImage::from_raw(1, 1, vec![1]).unwrap()
/// );
///
/// // A single row grayscale image with pixel type Luma<u8>
/// let single_row = gray_image!(1, 2, 3);
///
/// assert_pixels_eq!(
/// single_row,
/// GrayImage::from_raw(3, 1, vec![1, 2, 3]).unwrap()
/// );
///
/// // A grayscale image with 2 rows and 3 columns
/// let image = gray_image!(
/// 1, 2, 3;
/// 4, 5, 6);
///
/// let equivalent = GrayImage::from_raw(3, 2, vec![
/// 1, 2, 3,
/// 4, 5, 6
/// ]).unwrap();
///
/// // An empty grayscale image with pixel type Luma<i16>.
/// let empty_i16 = gray_image!(type: i16);
///
/// assert_pixels_eq!(
/// empty_i16,
/// ImageBuffer::<Luma<i16>, Vec<i16>>::from_raw(0, 0, vec![]).unwrap()
/// );
///
/// // A grayscale image with 2 rows, 3 columns and pixel type Luma<i16>
/// let image_i16 = gray_image!(type: i16,
/// 1, 2, 3;
/// 4, 5, 6);
///
/// let expected_i16 = ImageBuffer::<Luma<i16>, Vec<i16>>::from_raw(3, 2, vec![
/// 1, 2, 3,
/// 4, 5, 6]).unwrap();
///
/// assert_pixels_eq!(image_i16, expected_i16);
/// # }
/// ```
#[macro_export]
macro_rules! gray_image {
// Empty image with default channel type u8
() => {
gray_image!(type: u8)
};
// Empty image with the given channel type
(type: $channel_type:ty) => {
{
use image::{ImageBuffer, Luma};
ImageBuffer::<Luma<$channel_type>, Vec<$channel_type>>::new(0, 0)
}
};
// Non-empty image of default channel type u8
($( $( $x: expr ),*);*) => {
gray_image!(type: u8, $( $( $x ),*);*)
};
// Non-empty image of given channel type
(type: $channel_type:ty, $( $( $x: expr ),*);*) => {
{
use image::{ImageBuffer, Luma};
let nested_array = [ $( [ $($x),* ] ),* ];
let height = nested_array.len() as u32;
let width = nested_array[0].len() as u32;
let flat_array: Vec<_> = nested_array.iter()
.flat_map(|row| row.into_iter())
.cloned()
.collect();
ImageBuffer::<Luma<$channel_type>, Vec<$channel_type>>::from_raw(width, height, flat_array)
.unwrap()
}
}
}
/// Helper for defining RGB images.
///
/// Pixels are delineated by square brackets, columns are
/// separated by commas and rows are separated by semi-colons.
/// By default a subpixel type of `u8` is used but this can be
/// overridden, as shown in the examples.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use image::{ImageBuffer, Rgb, RgbImage};
///
/// // An empty image with pixel type Rgb<u8>
/// let empty = rgb_image!();
///
/// assert_pixels_eq!(
/// empty,
/// RgbImage::from_raw(0, 0, vec![]).unwrap()
/// );
///
/// // A single pixel image with pixel type Rgb<u8>
/// let single_pixel = rgb_image!([1, 2, 3]);
///
/// assert_pixels_eq!(
/// single_pixel,
/// RgbImage::from_raw(1, 1, vec![1, 2, 3]).unwrap()
/// );
///
/// // A single row image with pixel type Rgb<u8>
/// let single_row = rgb_image!([1, 2, 3], [4, 5, 6]);
///
/// assert_pixels_eq!(
/// single_row,
/// RgbImage::from_raw(2, 1, vec![1, 2, 3, 4, 5, 6]).unwrap()
/// );
///
/// // An image with 2 rows and 2 columns
/// let image = rgb_image!(
/// [1, 2, 3], [ 4, 5, 6];
/// [7, 8, 9], [10, 11, 12]);
///
/// let equivalent = RgbImage::from_raw(2, 2, vec![
/// 1, 2, 3, 4, 5, 6,
/// 7, 8, 9, 10, 11, 12
/// ]).unwrap();
///
/// assert_pixels_eq!(image, equivalent);
///
/// // An empty image with pixel type Rgb<i16>.
/// let empty_i16 = rgb_image!(type: i16);
///
/// // An image with 2 rows, 3 columns and pixel type Rgb<i16>
/// let image_i16 = rgb_image!(type: i16,
/// [1, 2, 3], [4, 5, 6];
/// [7, 8, 9], [10, 11, 12]);
///
/// let expected_i16 = ImageBuffer::<Rgb<i16>, Vec<i16>>::from_raw(2, 2, vec![
/// 1, 2, 3, 4, 5, 6,
/// 7, 8, 9, 10, 11, 12],
/// ).unwrap();
/// # }
/// ```
#[macro_export]
macro_rules! rgb_image {
// Empty image with default channel type u8
() => {
rgb_image!(type: u8)
};
// Empty image with the given channel type
(type: $channel_type:ty) => {
{
use image::{ImageBuffer, Rgb};
ImageBuffer::<Rgb<$channel_type>, Vec<$channel_type>>::new(0, 0)
}
};
// Non-empty image of default channel type u8
($( $( [$r: expr, $g: expr, $b: expr]),*);*) => {
rgb_image!(type: u8, $( $( [$r, $g, $b]),*);*)
};
// Non-empty image of given channel type
(type: $channel_type:ty, $( $( [$r: expr, $g: expr, $b: expr]),*);*) => {
{
use image::{ImageBuffer, Rgb};
let nested_array = [$( [ $([$r, $g, $b]),*]),*];
let height = nested_array.len() as u32;
let width = nested_array[0].len() as u32;
let flat_array: Vec<_> = nested_array.iter()
.flat_map(|row| row.into_iter().flat_map(|p| p.into_iter()))
.cloned()
.collect();
ImageBuffer::<Rgb<$channel_type>, Vec<$channel_type>>::from_raw(width, height, flat_array)
.unwrap()
}
}
}
/// Helper for defining RGBA images.
///
/// Pixels are delineated by square brackets, columns are
/// separated by commas and rows are separated by semi-colons.
/// By default a subpixel type of `u8` is used but this can be
/// overridden, as shown in the examples.
///
/// # Examples
/// ```
/// # extern crate image;
/// # #[macro_use]
/// # extern crate imageproc;
/// # fn main() {
/// use image::{ImageBuffer, Rgba, RgbaImage};
///
/// // An empty image with pixel type Rgba<u8>
/// let empty = rgba_image!();
///
/// assert_pixels_eq!(
/// empty,
/// RgbaImage::from_raw(0, 0, vec![]).unwrap()
/// );
///
/// // A single pixel image with pixel type Rgba<u8>
/// let single_pixel = rgba_image!([1, 2, 3, 4]);
///
/// assert_pixels_eq!(
/// single_pixel,
/// RgbaImage::from_raw(1, 1, vec![1, 2, 3, 4]).unwrap()
/// );
///
/// // A single row image with pixel type Rgba<u8>
/// let single_row = rgba_image!([1, 2, 3, 10], [4, 5, 6, 20]);
///
/// assert_pixels_eq!(
/// single_row,
/// RgbaImage::from_raw(2, 1, vec![1, 2, 3, 10, 4, 5, 6, 20]).unwrap()
/// );
///
/// // An image with 2 rows and 2 columns
/// let image = rgba_image!(
/// [1, 2, 3, 10], [ 4, 5, 6, 20];
/// [7, 8, 9, 30], [10, 11, 12, 40]);
///
/// let equivalent = RgbaImage::from_raw(2, 2, vec![
/// 1, 2, 3, 10, 4, 5, 6, 20,
/// 7, 8, 9, 30, 10, 11, 12, 40
/// ]).unwrap();
///
/// assert_pixels_eq!(image, equivalent);
///
/// // An empty image with pixel type Rgba<i16>.
/// let empty_i16 = rgba_image!(type: i16);
///
/// // An image with 2 rows, 3 columns and pixel type Rgba<i16>
/// let image_i16 = rgba_image!(type: i16,
/// [1, 2, 3, 10], [ 4, 5, 6, 20];
/// [7, 8, 9, 30], [10, 11, 12, 40]);
///
/// let expected_i16 = ImageBuffer::<Rgba<i16>, Vec<i16>>::from_raw(2, 2, vec![
/// 1, 2, 3, 10, 4, 5, 6, 20,
/// 7, 8, 9, 30, 10, 11, 12, 40],
/// ).unwrap();
/// # }
/// ```
#[macro_export]
macro_rules! rgba_image {
// Empty image with default channel type u8
() => {
rgba_image!(type: u8)
};
// Empty image with the given channel type
(type: $channel_type:ty) => {
{
use image::{ImageBuffer, Rgba};
ImageBuffer::<Rgba<$channel_type>, Vec<$channel_type>>::new(0, 0)
}
};
// Non-empty image of default channel type u8
($( $( [$r: expr, $g: expr, $b: expr, $a:expr]),*);*) => {
rgba_image!(type: u8, $( $( [$r, $g, $b, $a]),*);*)
};
// Non-empty image of given channel type
(type: $channel_type:ty, $( $( [$r: expr, $g: expr, $b: expr, $a: expr]),*);*) => {
{
use image::{ImageBuffer, Rgba};
let nested_array = [$( [ $([$r, $g, $b, $a]),*]),*];
let height = nested_array.len() as u32;
let width = nested_array[0].len() as u32;
let flat_array: Vec<_> = nested_array.iter()
.flat_map(|row| row.into_iter().flat_map(|p| p.into_iter()))
.cloned()
.collect();
ImageBuffer::<Rgba<$channel_type>, Vec<$channel_type>>::from_raw(width, height, flat_array)
.unwrap()
}
}
}
/// Human readable description of some of the pixels that differ
/// between left and right, or None if all pixels match.
pub fn pixel_diff_summary<I, J, P>(actual: &I, expected: &J) -> Option<String>
where
P: Pixel + PartialEq,
P::Subpixel: fmt::Debug,
I: GenericImage<Pixel = P>,
J: GenericImage<Pixel = P>,
{
significant_pixel_diff_summary(actual, expected, |p, q| p != q)
}
/// Human readable description of some of the pixels that differ
/// signifcantly (according to provided function) between left
/// and right, or None if all pixels match.
pub fn significant_pixel_diff_summary<I, J, F, P>(
actual: &I,
expected: &J,
is_significant_diff: F,
) -> Option<String>
where
P: Pixel,
P::Subpixel: fmt::Debug,
I: GenericImage<Pixel = P>,
J: GenericImage<Pixel = P>,
F: Fn((u32, u32, I::Pixel), (u32, u32, J::Pixel)) -> bool,
{
if actual.dimensions() != expected.dimensions() {
return Some(format!(
"dimensions do not match. \
actual: {:?}, expected: {:?}",
actual.dimensions(),
expected.dimensions()
));
}
let diffs = pixel_diffs(actual, expected, is_significant_diff);
if diffs.is_empty() {
return None;
}
Some(describe_pixel_diffs(actual, expected, &diffs))
}
/// Panics if any pixels differ between the two input images.
#[macro_export]
macro_rules! assert_pixels_eq {
($actual:expr, $expected:expr) => {{
$crate::assert_dimensions_match!($actual, $expected);
match $crate::utils::pixel_diff_summary(&$actual, &$expected) {
None => {}
Some(err) => panic!("{}", err),
};
}};
}
/// Panics if any pixels differ between the two images by more than the
/// given tolerance in a single channel.
#[macro_export]
macro_rules! assert_pixels_eq_within {
($actual:expr, $expected:expr, $channel_tolerance:expr) => {{
$crate::assert_dimensions_match!($actual, $expected);
let diffs = $crate::utils::pixel_diffs(&$actual, &$expected, |p, q| {
use image::Pixel;
let cp = p.2.channels();
let cq = q.2.channels();
if cp.len() != cq.len() {
panic!(
"pixels have different channel counts. \
actual: {:?}, expected: {:?}",
cp.len(),
cq.len()
)
}
let mut large_diff = false;
for i in 0..cp.len() {
let sp = cp[i];
let sq = cq[i];
// Handle unsigned subpixels
let diff = if sp > sq { sp - sq } else { sq - sp };
if diff > $channel_tolerance {
large_diff = true;
break;
}
}
large_diff
});
if !diffs.is_empty() {
panic!(
"{}",
$crate::utils::describe_pixel_diffs(&$actual, &$expected, &diffs,)
)
}
}};
}
/// Panics if image dimensions do not match.
#[macro_export]
macro_rules! assert_dimensions_match {
($actual:expr, $expected:expr) => {{
let actual_dim = $actual.dimensions();
let expected_dim = $expected.dimensions();
if actual_dim != expected_dim {
panic!(
"dimensions do not match. \
actual: {:?}, expected: {:?}",
actual_dim, expected_dim
)
}
}};
}
/// Lists pixels that differ between left and right images.
pub fn pixel_diffs<I, J, F, P>(actual: &I, expected: &J, is_diff: F) -> Vec<Diff<I::Pixel>>
where
P: Pixel,
I: GenericImage<Pixel = P>,
J: GenericImage<Pixel = P>,
F: Fn((u32, u32, I::Pixel), (u32, u32, J::Pixel)) -> bool,
{
if is_empty(actual) || is_empty(expected) {
return vec![];
}
// Can't just call $image.pixels(), as that needn't hit the
// trait pixels method - ImageBuffer defines its own pixels
// method with a different signature
GenericImageView::pixels(actual)
.zip(GenericImageView::pixels(expected))
.filter(|&(p, q)| is_diff(p, q))
.map(|(p, q)| {
assert!(p.0 == q.0 && p.1 == q.1, "Pixel locations do not match");
Diff {
x: p.0,
y: p.1,
actual: p.2,
expected: q.2,
}
})
.collect::<Vec<_>>()
}
fn is_empty<I: GenericImage>(image: &I) -> bool {
image.width() == 0 || image.height() == 0
}
/// A difference between two images
pub struct Diff<P> {
/// x-coordinate of diff.
pub x: u32,
/// y-coordinate of diff.
pub y: u32,
/// Pixel value in expected image.
pub expected: P,
/// Pixel value in actual image.
pub actual: P,
}
/// Gives a summary description of a list of pixel diffs for use in error messages.
pub fn describe_pixel_diffs<I, J, P>(actual: &I, expected: &J, diffs: &[Diff<P>]) -> String
where
P: Pixel,
P::Subpixel: fmt::Debug,
I: GenericImage<Pixel = P>,
J: GenericImage<Pixel = P>,
{
let mut err = "pixels do not match.\n".to_owned();
// Find the boundaries of the region containing diffs
let top_left = diffs.iter().fold((u32::MAX, u32::MAX), |acc, d| {
(acc.0.min(d.x), acc.1.min(d.y))
});
let bottom_right = diffs
.iter()
.fold((0, 0), |acc, d| (acc.0.max(d.x), acc.1.max(d.y)));
// If all the diffs are contained in a small region of the image then render all of this
// region, with a small margin.
if max(bottom_right.0 - top_left.0, bottom_right.1 - top_left.1) < 6 {
let left = max(0, top_left.0 as i32 - 2) as u32;
let top = max(0, top_left.1 as i32 - 2) as u32;
let right = min(actual.width() as i32 - 1, bottom_right.0 as i32 + 2) as u32;
let bottom = min(actual.height() as i32 - 1, bottom_right.1 as i32 + 2) as u32;
let diff_locations = diffs.iter().map(|d| (d.x, d.y)).collect::<HashSet<_>>();
err.push_str(&colored("Actual:", Color::Red));
let actual_rendered = render_image_region(actual, left, top, right, bottom, |x, y| {
if diff_locations.contains(&(x, y)) {
Color::Red
} else {
Color::Cyan
}
});
err.push_str(&actual_rendered);
err.push_str(&colored("Expected:", Color::Green));
let expected_rendered = render_image_region(expected, left, top, right, bottom, |x, y| {
if diff_locations.contains(&(x, y)) {
Color::Green
} else {
Color::Cyan
}
});
err.push_str(&expected_rendered);
return err;
}
// Otherwise just list the first 5 diffs
err.push_str(
&(diffs
.iter()
.take(5)
.map(|d| {
format!(
"\nlocation: {}, actual: {}, expected: {} ",
colored(&format!("{:?}", (d.x, d.y)), Color::Yellow),
colored(&render_pixel(d.actual), Color::Red),
colored(&render_pixel(d.expected), Color::Green)
)
})
.collect::<Vec<_>>()
.join("")),
);
err
}
enum Color {
Red,
Green,
Cyan,
Yellow,
}
fn render_image_region<I, P, C>(
image: &I,
left: u32,
top: u32,
right: u32,
bottom: u32,
color: C,
) -> String
where
P: Pixel,
P::Subpixel: fmt::Debug,
I: GenericImage<Pixel = P>,
C: Fn(u32, u32) -> Color,
{
let mut rendered = String::new();
// Render all the pixels first, so that we can determine the column width
let mut rendered_pixels = vec![];
for y in top..bottom + 1 {
for x in left..right + 1 {
let p = image.get_pixel(x, y);
rendered_pixels.push(render_pixel(p));
}
}
// Width of a column containing rendered pixels
let pixel_column_width = rendered_pixels.iter().map(|p| p.len()).max().unwrap() + 1;
// Maximum number of digits required to display a row or column number
let max_digits = (max(1, max(right, bottom)) as f64).log10().ceil() as usize;
// Each pixel column is labelled with its column number
let pixel_column_width = pixel_column_width.max(max_digits + 1);
let num_columns = (right - left + 1) as usize;
// First row contains the column numbers
write!(rendered, "\n{}", " ".repeat(max_digits + 4)).unwrap();
for x in left..right + 1 {
write!(rendered, "{x:>w$} ", x = x, w = pixel_column_width).unwrap();
}
// +--------------
write!(
rendered,
"\n {}+{}",
" ".repeat(max_digits),
"-".repeat((pixel_column_width + 1) * num_columns + 1)
)
.unwrap();
// row_number |
write!(rendered, "\n {y:>w$}| ", y = " ", w = max_digits).unwrap();
let mut count = 0;
for y in top..bottom + 1 {
// Empty row, except for leading | separating row numbers from pixels
write!(rendered, "\n {y:>w$}| ", y = y, w = max_digits).unwrap();
for x in left..right + 1 {
// Pad pixel string to column width and right align
let padded = format!(
"{c:>w$}",
c = rendered_pixels[count],
w = pixel_column_width
);
write!(rendered, "{} ", &colored(&padded, color(x, y))).unwrap();
count += 1;
}
// Empty row, except for leading | separating row numbers from pixels
write!(rendered, "\n {y:>w$}| ", y = " ", w = max_digits).unwrap();
}
rendered.push('\n');
rendered
}
fn render_pixel<P>(p: P) -> String
where
P: Pixel,
P::Subpixel: fmt::Debug,
{
let cs = p.channels();
match cs.len() {
1 => format!("{:?}", cs[0]),
_ => format!("[{}]", cs.iter().map(|c| format!("{:?}", c)).join(", ")),
}
}
fn colored(s: &str, c: Color) -> String {
let escape_sequence = match c {
Color::Red => "\x1b[31m",
Color::Green => "\x1b[32m",
Color::Cyan => "\x1b[36m",
Color::Yellow => "\x1b[33m",
};
format!("{}{}\x1b[0m", escape_sequence, s)
}
/// Loads image at given path, panicking on failure.
pub fn load_image_or_panic<P: AsRef<Path> + fmt::Debug>(path: P) -> DynamicImage {
open(path.as_ref()).expect(&format!("Could not load image at {:?}", path.as_ref()))
}
/// Gray image to use in benchmarks. This is neither noise nor
/// similar to natural images - it's just a convenience method
/// to produce an image that's not constant.
pub fn gray_bench_image(width: u32, height: u32) -> GrayImage {
let mut image = GrayImage::new(width, height);
for y in 0..image.height() {
for x in 0..image.width() {
let intensity = (x % 7 + y % 6) as u8;
image.put_pixel(x, y, Luma([intensity]));
}
}
image
}
/// RGB image to use in benchmarks. See comment on `gray_bench_image`.
pub fn rgb_bench_image(width: u32, height: u32) -> RgbImage {
use std::cmp;
let mut image = RgbImage::new(width, height);
for y in 0..image.height() {
for x in 0..image.width() {
let r = (x % 7 + y % 6) as u8;
let g = 255u8 - r;
let b = cmp::min(r, g);
image.put_pixel(x, y, Rgb([r, g, b]));
}
}
image
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_assert_pixels_eq_passes() {
let image = gray_image!(
00, 01, 02;
10, 11, 12);
assert_pixels_eq!(image, image);
}
#[test]
#[should_panic]
fn test_assert_pixels_eq_fails() {
let image = gray_image!(
00, 01, 02;
10, 11, 12);
let diff = gray_image!(
00, 11, 02;
10, 11, 12);
assert_pixels_eq!(diff, image);
}
#[test]
fn test_assert_pixels_eq_within_passes() {
let image = gray_image!(
00, 01, 02;
10, 11, 12);
let diff = gray_image!(
00, 02, 02;
10, 11, 12);
assert_pixels_eq_within!(diff, image, 1);
}
#[test]
#[should_panic]
fn test_assert_pixels_eq_within_fails() {
let image = gray_image!(
00, 01, 02;
10, 11, 12);
let diff = gray_image!(
00, 03, 02;
10, 11, 12);
assert_pixels_eq_within!(diff, image, 1);
}
#[test]
fn test_pixel_diff_summary_handles_1x1_image() {
let summary = pixel_diff_summary(&gray_image!(1), &gray_image!(0));
assert_eq!(&summary.unwrap()[0..19], "pixels do not match");
}
}