ndarray/data_repr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
use std::mem;
use std::mem::ManuallyDrop;
use std::ptr::NonNull;
use alloc::slice;
use alloc::borrow::ToOwned;
use alloc::vec::Vec;
use crate::extension::nonnull;
/// Array's representation.
///
/// *Don’t use this type directly—use the type alias
/// [`Array`](type.Array.html) for the array type!*
// Like a Vec, but with non-unique ownership semantics
//
// repr(C) to make it transmutable OwnedRepr<A> -> OwnedRepr<B> if
// transmutable A -> B.
#[derive(Debug)]
#[repr(C)]
pub struct OwnedRepr<A> {
ptr: NonNull<A>,
len: usize,
capacity: usize,
}
impl<A> OwnedRepr<A> {
pub(crate) fn from(v: Vec<A>) -> Self {
let mut v = ManuallyDrop::new(v);
let len = v.len();
let capacity = v.capacity();
let ptr = nonnull::nonnull_from_vec_data(&mut v);
Self {
ptr,
len,
capacity,
}
}
pub(crate) fn into_vec(self) -> Vec<A> {
ManuallyDrop::new(self).take_as_vec()
}
pub(crate) fn as_slice(&self) -> &[A] {
unsafe {
slice::from_raw_parts(self.ptr.as_ptr(), self.len)
}
}
pub(crate) fn len(&self) -> usize { self.len }
pub(crate) fn as_ptr(&self) -> *const A {
self.ptr.as_ptr()
}
pub(crate) fn as_nonnull_mut(&mut self) -> NonNull<A> {
self.ptr
}
/// Cast self into equivalent repr of other element type
///
/// ## Safety
///
/// Caller must ensure the two types have the same representation.
/// **Panics** if sizes don't match (which is not a sufficient check).
pub(crate) unsafe fn data_subst<B>(self) -> OwnedRepr<B> {
// necessary but not sufficient check
assert_eq!(mem::size_of::<A>(), mem::size_of::<B>());
let self_ = ManuallyDrop::new(self);
OwnedRepr {
ptr: self_.ptr.cast::<B>(),
len: self_.len,
capacity: self_.capacity,
}
}
fn take_as_vec(&mut self) -> Vec<A> {
let capacity = self.capacity;
let len = self.len;
self.len = 0;
self.capacity = 0;
unsafe {
Vec::from_raw_parts(self.ptr.as_ptr(), len, capacity)
}
}
}
impl<A> Clone for OwnedRepr<A>
where A: Clone
{
fn clone(&self) -> Self {
Self::from(self.as_slice().to_owned())
}
fn clone_from(&mut self, other: &Self) {
let mut v = self.take_as_vec();
let other = other.as_slice();
if v.len() > other.len() {
v.truncate(other.len());
}
let (front, back) = other.split_at(v.len());
v.clone_from_slice(front);
v.extend_from_slice(back);
*self = Self::from(v);
}
}
impl<A> Drop for OwnedRepr<A> {
fn drop(&mut self) {
if self.capacity > 0 {
// correct because: If the elements don't need dropping, an
// empty Vec is ok. Only the Vec's allocation needs dropping.
//
// implemented because: in some places in ndarray
// where A: Copy (hence does not need drop) we use uninitialized elements in
// vectors. Setting the length to 0 avoids that the vector tries to
// drop, slice or otherwise produce values of these elements.
// (The details of the validity letting this happen with nonzero len, are
// under discussion as of this writing.)
if !mem::needs_drop::<A>() {
self.len = 0;
}
// drop as a Vec.
self.take_as_vec();
}
}
}
unsafe impl<A> Sync for OwnedRepr<A> where A: Sync { }
unsafe impl<A> Send for OwnedRepr<A> where A: Send { }