onnxruntime/tensor/
ndarray_tensor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
//! Module containing a tensor trait extending [`ndarray::ArrayBase`](https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html)

use ndarray::{Array, ArrayBase};

/// Trait extending [`ndarray::ArrayBase`](https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html)
/// with useful tensor operations.
///
/// # Generic
///
/// The trait is generic over:
/// * `S`: [`ndarray::ArrayBase`](https://docs.rs/ndarray/latest/ndarray/struct.ArrayBase.html)'s data container
/// * `T`: Type contained inside the tensor (for example `f32`)
/// * `D`: Tensor's dimension ([`ndarray::Dimension`](https://docs.rs/ndarray/latest/ndarray/trait.Dimension.html))
pub trait NdArrayTensor<S, T, D> {
    /// Calculate the [softmax](https://en.wikipedia.org/wiki/Softmax_function) of the tensor along a given axis
    ///
    /// # Trait Bounds
    ///
    /// The function is generic and thus has some trait bounds:
    /// * `D: ndarray::RemoveAxis`: The summation over an axis reduces the dimension of the tensor. A 0-D tensor thus
    ///   cannot have a softmax calculated.
    /// * `S: ndarray::RawData + ndarray::Data + ndarray::RawData<Elem = T>`: The storage of the tensor can be an owned
    ///   array ([`ndarray::Array`](https://docs.rs/ndarray/latest/ndarray/type.Array.html)) or an array view
    ///   ([`ndarray::ArrayView`](https://docs.rs/ndarray/latest/ndarray/type.ArrayView.html)).
    /// * `<S as ndarray::RawData>::Elem: std::clone::Clone`: The elements of the tensor must be `Clone`.
    /// * `T: ndarray::NdFloat + std::ops::SubAssign + std::ops::DivAssign`: The elements of the tensor must be workable
    ///   as floats and must support `-=` and `/=` operations.
    fn softmax(&self, axis: ndarray::Axis) -> Array<T, D>
    where
        D: ndarray::RemoveAxis,
        S: ndarray::RawData + ndarray::Data + ndarray::RawData<Elem = T>,
        <S as ndarray::RawData>::Elem: std::clone::Clone,
        T: ndarray::NdFloat + std::ops::SubAssign + std::ops::DivAssign;
}

impl<S, T, D> NdArrayTensor<S, T, D> for ArrayBase<S, D>
where
    D: ndarray::RemoveAxis,
    S: ndarray::RawData + ndarray::Data + ndarray::RawData<Elem = T>,
    <S as ndarray::RawData>::Elem: std::clone::Clone,
    T: ndarray::NdFloat + std::ops::SubAssign + std::ops::DivAssign,
{
    fn softmax(&self, axis: ndarray::Axis) -> Array<T, D> {
        let mut new_array: Array<T, D> = self.to_owned();
        // FIXME: Change to non-overflowing formula
        // e = np.exp(A - np.sum(A, axis=1, keepdims=True))
        // np.exp(a) / np.sum(np.exp(a))
        new_array.map_inplace(|v| *v = v.exp());
        let sum = new_array.sum_axis(axis).insert_axis(axis);
        new_array /= &sum;

        new_array
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use ndarray::{arr1, arr2, arr3};
    use test_env_log::test;

    #[test]
    fn softmax_1d() {
        let array = arr1(&[1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]);

        let expected_softmax = arr1(&[
            0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
        ]);

        let softmax = array.softmax(ndarray::Axis(0));

        assert_eq!(softmax.shape(), expected_softmax.shape());

        let diff = softmax - expected_softmax;

        assert!(diff.iter().all(|d| d.abs() < 1.0e-7));
    }

    #[test]
    fn softmax_2d() {
        let array = arr2(&[
            [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
            [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
        ]);

        let expected_softmax = arr2(&[
            [
                0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
            ],
            [
                0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
            ],
        ]);

        let softmax = array.softmax(ndarray::Axis(1));

        assert_eq!(softmax.shape(), expected_softmax.shape());

        let diff = softmax - expected_softmax;

        assert!(diff.iter().all(|d| d.abs() < 1.0e-7));
    }

    #[test]
    fn softmax_3d() {
        let array = arr3(&[
            [
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
            ],
            [
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
            ],
            [
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
                [1.0_f32, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0],
            ],
        ]);

        let expected_softmax = arr3(&[
            [
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
            ],
            [
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
            ],
            [
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
                [
                    0.02364054, 0.06426166, 0.1746813, 0.474833, 0.02364054, 0.06426166, 0.1746813,
                ],
            ],
        ]);

        let softmax = array.softmax(ndarray::Axis(2));

        assert_eq!(softmax.shape(), expected_softmax.shape());

        let diff = softmax - expected_softmax;

        assert!(diff.iter().all(|d| d.abs() < 1.0e-7));
    }
}