planus/vectors/
vector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
use core::{marker::PhantomData, num::NonZeroUsize};

use crate::{
    errors::{self, ErrorKind},
    impls::array_from_buffer,
    slice_helpers::SliceWithStartOffset,
    traits::VectorRead,
    TableRead,
};

/// A [`slice`]-like view into a serialized flatbuffer that deserializes on demand.
pub struct Vector<'buf, T: ?Sized> {
    buffer: SliceWithStartOffset<'buf>,
    len: usize,
    _marker: PhantomData<&'buf T>,
}

impl<'buf, T: ?Sized> Copy for Vector<'buf, T> {}
impl<'buf, T: ?Sized> Clone for Vector<'buf, T> {
    #[inline]
    fn clone(&self) -> Self {
        *self
    }
}

impl<'buf, T: ?Sized> Vector<'buf, T> {
    /// Returns an empty `Vector`
    ///
    /// This is typically not very useful, since the vector is read-only, but
    /// has uses for instance as a default value.
    #[inline]
    #[must_use]
    pub const fn new_empty() -> Vector<'buf, T> {
        Self {
            buffer: SliceWithStartOffset {
                buffer: &[],
                offset_from_start: 0,
            },
            len: 0,
            _marker: PhantomData,
        }
    }

    /// Checks if the vector is empty.
    #[inline]
    #[must_use]
    pub fn is_empty(self) -> bool {
        self.len == 0
    }

    /// Returns the number of elements in the vector.
    #[inline]
    #[must_use]
    pub fn len(self) -> usize {
        self.len
    }
}

impl<'buf, T: VectorRead<'buf>> Vector<'buf, T> {
    /// Returns the first element of the `Vector`, or `None` if it is empty.
    #[inline]
    #[must_use]
    pub fn first(self) -> Option<T> {
        self.get(0)
    }

    /// Returns the last element of the `Vector`, or `None` if it is empty.
    #[inline]
    #[must_use]
    pub fn last(self) -> Option<T> {
        self.get(self.len().checked_sub(1)?)
    }

    /// Returns an element or sub-vector depending on the type of
    /// index.
    ///
    /// - If given a position, returns the element at that
    ///   position or `None` if out of bounds.
    /// - If given a range, returns the sub-vector corresponding to that range,
    ///   or `None` if out of bounds.
    #[inline]
    #[must_use]
    pub fn get<I>(self, index: I) -> Option<I::Output>
    where
        I: VectorIndex<'buf, T>,
    {
        index.get(self)
    }

    /// Returns an element or sub-vector, without doing bounds checking.
    ///
    /// For a safe alternative see [`get`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting output is not used.
    ///
    /// [`get`]: Vector::get
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    #[must_use]
    pub unsafe fn get_unchecked<I>(self, index: I) -> I::Output
    where
        I: VectorIndex<'buf, T>,
    {
        index.get_unchecked(self)
    }

    /// Returns an iterator over the vector.
    #[inline]
    #[must_use]
    pub fn iter(self) -> super::Iter<'buf, T> {
        super::Iter::new(self)
    }

    /// Returns an iterator over `chunk_size` elements of the [`Vector`] at a time, starting at the
    /// beginning of the vector.
    ///
    /// The chunks are [`Vector`]s themselves and do not overlap. If `chunk_size` does not
    /// divide the length of the [`Vector`], then the last chunk will not have length `chunk_size`.
    ///
    /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
    /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
    /// vector.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is 0.
    ///
    /// [`chunks_exact`]: Vector::chunks_exact
    /// [`rchunks`]: Vector::rchunks
    #[inline]
    #[must_use]
    pub fn chunks(self, chunk_size: usize) -> super::Chunks<'buf, T> {
        let chunk_size = NonZeroUsize::new(chunk_size).expect("chunks cannot have a size of zero");
        super::Chunks::new(self, chunk_size)
    }

    /// Returns an iterator over `chunk_size` elements of the [`Vector`] at a time, starting at the end
    /// of the vector.
    ///
    /// The chunks are [`Vector`]s themselves and do not overlap. If `chunk_size` does not
    /// divide the length of the [`Vector`], then the last chunk will not have length `chunk_size`.
    ///
    /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
    /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
    /// of the vector.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is 0.
    ///
    /// [`rchunks_exact`]: Vector::rchunks_exact
    /// [`chunks`]: Vector::chunks
    #[inline]
    #[must_use]
    pub fn rchunks(self, chunk_size: usize) -> super::RChunks<'buf, T> {
        let chunk_size = NonZeroUsize::new(chunk_size).expect("chunks cannot have a size of zero");
        super::RChunks::new(self, chunk_size)
    }

    /// Returns an iterator over `chunk_size` elements of the [`Vector`] at a time, starting at the
    /// beginning of the vector.
    ///
    /// The chunks are [`Vector`]s themselves and do not overlap. If `chunk_size` does not
    /// divide the length of the vector, then the last up to `chunk_size-1` elements will
    /// be omitted and can be retrieved from the `remainder` function of the iterator.
    ///
    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
    /// resulting code better than in the case of [`chunks`].
    ///
    /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
    /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the vector.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is 0.
    ///
    /// [`chunks`]: Vector::chunks
    /// [`rchunks_exact`]: Vector::rchunks_exact
    #[inline]
    #[must_use]
    pub fn chunks_exact(self, chunk_size: usize) -> super::ChunksExact<'buf, T> {
        let chunk_size = NonZeroUsize::new(chunk_size).expect("chunks cannot have a size of zero");
        super::ChunksExact::new(self, chunk_size)
    }

    /// Returns an iterator over `chunk_size` elements of the [`Vector`] at a time, starting at the
    /// end of the vector.
    ///
    /// The chunks are [`Vector`]s themselves and do not overlap. If `chunk_size` does not
    /// divide the length of the vector, then the last up to `chunk_size-1` elements will
    /// be omitted and can be retrieved from the `remainder` function of the iterator.
    ///
    /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
    /// resulting code better than in the case of [`rchunks`].
    ///
    /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
    /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
    /// vector.
    ///
    /// # Panics
    ///
    /// Panics if `chunk_size` is 0.
    ///
    /// [`rchunks`]: Vector::rchunks
    /// [`chunks_exact`]: Vector::chunks_exact
    #[inline]
    #[must_use]
    pub fn rchunks_exact(self, chunk_size: usize) -> super::RChunksExact<'buf, T> {
        let chunk_size = NonZeroUsize::new(chunk_size).expect("chunks cannot have a size of zero");
        super::RChunksExact::new(self, chunk_size)
    }

    /// Returns an iterator over all contiguous windows of length
    /// `size`. The windows overlap. If the vector is shorter than
    /// `size`, the iterator returns no values.
    ///
    /// # Panics
    ///
    /// Panics if `size` is 0.
    #[inline]
    #[must_use]
    pub fn windows(self, size: usize) -> super::Windows<'buf, T> {
        let size = NonZeroUsize::new(size).expect("windows cannot have a size of zero");
        super::Windows::new(self, size)
    }

    /// Returns the first and all the rest of the elements of the `Vector`, or `None` if it is empty
    #[inline]
    #[must_use]
    pub fn split_first(self) -> Option<(T, Vector<'buf, T>)> {
        if self.is_empty() {
            None
        } else {
            Some(unsafe { (self.get_unchecked(0), self.get_unchecked(1..)) })
        }
    }

    /// Returns the last and all the rest of the elements of the `Vector`, or `None` if it is empty
    #[inline]
    #[must_use]
    pub fn split_last(self) -> Option<(T, Vector<'buf, T>)> {
        if self.is_empty() {
            None
        } else {
            Some(unsafe {
                (
                    self.get_unchecked(self.len - 1),
                    self.get_unchecked(..self.len - 1),
                )
            })
        }
    }

    /// Divides one `Vector` into two at an index.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    #[inline]
    #[must_use]
    pub fn split_at(self, mid: usize) -> Option<(Vector<'buf, T>, Vector<'buf, T>)> {
        if mid <= self.len {
            Some(unsafe { self.split_at_unchecked(mid) })
        } else {
            None
        }
    }

    /// Divides one [`Vector`] into two at an index, without doing bounds checking.
    ///
    /// The first will contain all indices from `[0, mid)` (excluding
    /// the index `mid` itself) and the second will contain all
    /// indices from `[mid, len)` (excluding the index `len` itself).
    ///
    /// For a safe alternative see [`split_at`].
    ///
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting output is not used. The caller has to ensure that
    /// `0 <= mid <= self.len()`.
    ///
    /// [`split_at`]: Vector::split_at
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    #[inline]
    #[must_use]
    pub unsafe fn split_at_unchecked(self, mid: usize) -> (Vector<'buf, T>, Vector<'buf, T>) {
        (self.get_unchecked(..mid), self.get_unchecked(mid..))
    }
}

impl<'buf, T: VectorRead<'buf>> Vector<'buf, T> {
    /// Copies self into a new `Vec`.
    pub fn to_vec<O>(self) -> crate::Result<alloc::vec::Vec<O>>
    where
        O: core::convert::TryFrom<T>,
        crate::errors::Error: From<O::Error>,
    {
        self.iter()
            .map(|v| O::try_from(v).map_err(crate::errors::Error::from))
            .collect()
    }
}

impl<'buf, T, E> Vector<'buf, core::result::Result<T, E>> {
    /// Copies self into a new `Vec`.
    pub fn to_vec_result<O>(self) -> crate::Result<alloc::vec::Vec<O>>
    where
        T: crate::traits::VectorReadInner<'buf>,
        E: core::convert::From<T::Error>,
        O: core::convert::TryFrom<T>,
        crate::errors::Error: From<E> + From<O::Error>,
    {
        self.iter()
            .map(|v| O::try_from(v?).map_err(|e| e.into()))
            .collect()
    }
}

impl<'buf, T: VectorRead<'buf>> IntoIterator for Vector<'buf, T> {
    type Item = T;
    type IntoIter = super::Iter<'buf, T>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'buf, T: VectorRead<'buf> + core::fmt::Debug> core::fmt::Debug for Vector<'buf, T>
where
    T: core::fmt::Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_list().entries(*self).finish()
    }
}

/// A helper trait used for indexing operations.
pub trait VectorIndex<'buf, T: VectorRead<'buf>>: private::Sealed {
    /// The output type returned by methods.
    type Output;

    /// Returns a the output at this location, if in bounds.
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output>;

    /// Returns a mutable reference to the output at this location, without
    /// performing any bounds checking.
    /// Calling this method with an out-of-bounds index is
    /// *[undefined behavior]* even if the resulting output is not used.
    ///
    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output;
}

/// Convert pair of `ops::Bound`s into `core::ops::Range` without performing any bounds checking and (in debug) overflow checking
fn into_range_unchecked(
    len: usize,
    (start, end): (core::ops::Bound<usize>, core::ops::Bound<usize>),
) -> core::ops::Range<usize> {
    use core::ops::Bound;
    let start = match start {
        Bound::Included(i) => i,
        Bound::Excluded(i) => i + 1,
        Bound::Unbounded => 0,
    };
    let end = match end {
        Bound::Included(i) => i + 1,
        Bound::Excluded(i) => i,
        Bound::Unbounded => len,
    };
    start..end
}

/// Convert pair of `core::ops::Bound`s into `core::ops::Range`.
/// Returns `None` on overflowing indices.
fn into_range(
    len: usize,
    (start, end): (core::ops::Bound<usize>, core::ops::Bound<usize>),
) -> Option<core::ops::Range<usize>> {
    use core::ops::Bound;
    let start = match start {
        Bound::Included(start) => start,
        Bound::Excluded(start) => start.checked_add(1)?,
        Bound::Unbounded => 0,
    };

    let end = match end {
        Bound::Included(end) => end.checked_add(1)?,
        Bound::Excluded(end) => end,
        Bound::Unbounded => len,
    };

    // Don't bother with checking `start < end` and `end <= len`
    // since these checks are handled by `Range` impls

    Some(start..end)
}
impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T>
    for (core::ops::Bound<usize>, core::ops::Bound<usize>)
{
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        into_range(vector.len, self)?.get(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        into_range_unchecked(vector.len, self).get_unchecked(vector)
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for usize {
    type Output = T;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        if self < vector.len {
            Some(unsafe { self.get_unchecked(vector) })
        } else {
            None
        }
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        debug_assert!(self < vector.len);
        debug_assert!(vector.len.checked_mul(T::STRIDE).unwrap() <= vector.buffer.len());
        T::from_buffer(vector.buffer, T::STRIDE * self)
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::Range<usize> {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        if self.start > self.end || self.end > vector.len {
            None
        } else {
            // SAFETY: `self` is checked to be valid and in bounds above.
            unsafe { Some(self.get_unchecked(vector)) }
        }
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        debug_assert!(self.start <= self.end);
        debug_assert!(self.end <= vector.len);
        Vector {
            buffer: vector
                .buffer
                .advance(T::STRIDE * self.start)
                .expect("IMPOSSIBLE: the length was checked on creation"),
            len: self.end - self.start,
            _marker: PhantomData,
        }
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::RangeFrom<usize> {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        (self.start..vector.len).get(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        (self.start..vector.len).get_unchecked(vector)
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::RangeFull {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        Some(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        vector
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::RangeInclusive<usize> {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        (*self.start()..self.end().checked_add(1)?).get(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        (*self.start()..self.end() + 1).get_unchecked(vector)
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::RangeTo<usize> {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        (0..self.end).get(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        (0..self.end).get_unchecked(vector)
    }
}

impl<'buf, T: VectorRead<'buf>> VectorIndex<'buf, T> for core::ops::RangeToInclusive<usize> {
    type Output = Vector<'buf, T>;

    #[inline]
    fn get(self, vector: Vector<'buf, T>) -> Option<Self::Output> {
        (0..=self.end).get(vector)
    }

    #[inline]
    unsafe fn get_unchecked(self, vector: Vector<'buf, T>) -> Self::Output {
        (0..=self.end).get_unchecked(vector)
    }
}

impl<'buf, T: VectorRead<'buf>, O> TryFrom<Vector<'buf, T>> for alloc::vec::Vec<O>
where
    O: core::convert::TryFrom<T>,
    errors::Error: From<O::Error>,
{
    type Error = crate::errors::Error;

    fn try_from(value: Vector<'buf, T>) -> Result<Self, Self::Error> {
        value
            .iter()
            .map(|v| O::try_from(v).map_err(errors::Error::from))
            .collect()
    }
}

impl<'buf, T: ?Sized + VectorRead<'buf>> TableRead<'buf> for Vector<'buf, T> {
    fn from_buffer(
        buffer: SliceWithStartOffset<'buf>,
        offset: usize,
    ) -> core::result::Result<Self, ErrorKind> {
        let (buffer, len) = array_from_buffer(buffer, offset)?;
        if len.checked_mul(T::STRIDE).ok_or(ErrorKind::InvalidLength)? <= buffer.len() {
            Ok(Vector {
                buffer,
                len,
                _marker: PhantomData,
            })
        } else {
            Err(ErrorKind::InvalidLength)
        }
    }
}

mod private {
    pub trait Sealed {}

    // Implement for those same types, but no others.
    impl Sealed for (core::ops::Bound<usize>, core::ops::Bound<usize>) {}
    impl Sealed for usize {}
    impl Sealed for core::ops::Range<usize> {}
    impl Sealed for core::ops::RangeFrom<usize> {}
    impl Sealed for core::ops::RangeFull {}
    impl Sealed for core::ops::RangeInclusive<usize> {}
    impl Sealed for core::ops::RangeTo<usize> {}
    impl Sealed for core::ops::RangeToInclusive<usize> {}
}