rand_distr/dirichlet.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The dirichlet distribution.
use rand::Rng;
use crate::{Distribution, Gamma, StandardNormal, Exp1, Open01};
use crate::utils::Float;
/// The dirichelet distribution `Dirichlet(alpha)`.
///
/// The Dirichlet distribution is a family of continuous multivariate
/// probability distributions parameterized by a vector alpha of positive reals.
/// It is a multivariate generalization of the beta distribution.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_distr::Dirichlet;
///
/// let dirichlet = Dirichlet::new(vec![1.0, 2.0, 3.0]).unwrap();
/// let samples = dirichlet.sample(&mut rand::thread_rng());
/// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples);
/// ```
#[derive(Clone, Debug)]
pub struct Dirichlet<N> {
/// Concentration parameters (alpha)
alpha: Vec<N>,
}
/// Error type returned from `Dirchlet::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `alpha.len() < 2`.
AlphaTooShort,
/// `alpha <= 0.0` or `nan`.
AlphaTooSmall,
/// `size < 2`.
SizeTooSmall,
}
impl<N: Float> Dirichlet<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
/// Construct a new `Dirichlet` with the given alpha parameter `alpha`.
///
/// Requires `alpha.len() >= 2`.
#[inline]
pub fn new<V: Into<Vec<N>>>(alpha: V) -> Result<Dirichlet<N>, Error> {
let a = alpha.into();
if a.len() < 2 {
return Err(Error::AlphaTooShort);
}
for &ai in &a {
if !(ai > N::from(0.0)) {
return Err(Error::AlphaTooSmall);
}
}
Ok(Dirichlet { alpha: a })
}
/// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`.
///
/// Requires `size >= 2`.
#[inline]
pub fn new_with_size(alpha: N, size: usize) -> Result<Dirichlet<N>, Error> {
if !(alpha > N::from(0.0)) {
return Err(Error::AlphaTooSmall);
}
if size < 2 {
return Err(Error::SizeTooSmall);
}
Ok(Dirichlet {
alpha: vec![alpha; size],
})
}
}
impl<N: Float> Distribution<Vec<N>> for Dirichlet<N>
where StandardNormal: Distribution<N>, Exp1: Distribution<N>, Open01: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Vec<N> {
let n = self.alpha.len();
let mut samples = vec![N::from(0.0); n];
let mut sum = N::from(0.0);
for (s, &a) in samples.iter_mut().zip(self.alpha.iter()) {
let g = Gamma::new(a, N::from(1.0)).unwrap();
*s = g.sample(rng);
sum += *s;
}
let invacc = N::from(1.0) / sum;
for s in samples.iter_mut() {
*s *= invacc;
}
samples
}
}
#[cfg(test)]
mod test {
use super::Dirichlet;
use crate::Distribution;
#[test]
fn test_dirichlet() {
let d = Dirichlet::new(vec![1.0, 2.0, 3.0]).unwrap();
let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
.map(|x| {
assert!(x > 0.0);
x
})
.collect();
}
#[test]
fn test_dirichlet_with_param() {
let alpha = 0.5f64;
let size = 2;
let d = Dirichlet::new_with_size(alpha, size).unwrap();
let mut rng = crate::test::rng(221);
let samples = d.sample(&mut rng);
let _: Vec<f64> = samples
.into_iter()
.map(|x| {
assert!(x > 0.0);
x
})
.collect();
}
#[test]
#[should_panic]
fn test_dirichlet_invalid_length() {
Dirichlet::new_with_size(0.5f64, 1).unwrap();
}
#[test]
#[should_panic]
fn test_dirichlet_invalid_alpha() {
Dirichlet::new_with_size(0.0f64, 2).unwrap();
}
}