rand_distr/normal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The normal and derived distributions.
use rand::Rng;
use crate::{ziggurat_tables, Distribution, Open01};
use crate::utils::{ziggurat, Float};
/// Samples floating-point numbers according to the normal distribution
/// `N(0, 1)` (a.k.a. a standard normal, or Gaussian). This is equivalent to
/// `Normal::new(0.0, 1.0)` but faster.
///
/// See `Normal` for the general normal distribution.
///
/// Implemented via the ZIGNOR variant[^1] of the Ziggurat method.
///
/// [^1]: Jurgen A. Doornik (2005). [*An Improved Ziggurat Method to
/// Generate Normal Random Samples*](
/// https://www.doornik.com/research/ziggurat.pdf).
/// Nuffield College, Oxford
///
/// # Example
/// ```
/// use rand::prelude::*;
/// use rand_distr::StandardNormal;
///
/// let val: f64 = thread_rng().sample(StandardNormal);
/// println!("{}", val);
/// ```
#[derive(Clone, Copy, Debug)]
pub struct StandardNormal;
impl Distribution<f32> for StandardNormal {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f32 {
// TODO: use optimal 32-bit implementation
let x: f64 = self.sample(rng);
x as f32
}
}
impl Distribution<f64> for StandardNormal {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
#[inline]
fn pdf(x: f64) -> f64 {
(-x*x/2.0).exp()
}
#[inline]
fn zero_case<R: Rng + ?Sized>(rng: &mut R, u: f64) -> f64 {
// compute a random number in the tail by hand
// strange initial conditions, because the loop is not
// do-while, so the condition should be true on the first
// run, they get overwritten anyway (0 < 1, so these are
// good).
let mut x = 1.0f64;
let mut y = 0.0f64;
while -2.0 * y < x * x {
let x_: f64 = rng.sample(Open01);
let y_: f64 = rng.sample(Open01);
x = x_.ln() / ziggurat_tables::ZIG_NORM_R;
y = y_.ln();
}
if u < 0.0 { x - ziggurat_tables::ZIG_NORM_R } else { ziggurat_tables::ZIG_NORM_R - x }
}
ziggurat(rng, true, // this is symmetric
&ziggurat_tables::ZIG_NORM_X,
&ziggurat_tables::ZIG_NORM_F,
pdf, zero_case)
}
}
/// The normal distribution `N(mean, std_dev**2)`.
///
/// This uses the ZIGNOR variant of the Ziggurat method, see [`StandardNormal`]
/// for more details.
///
/// Note that [`StandardNormal`] is an optimised implementation for mean 0, and
/// standard deviation 1.
///
/// # Example
///
/// ```
/// use rand_distr::{Normal, Distribution};
///
/// // mean 2, standard deviation 3
/// let normal = Normal::new(2.0, 3.0).unwrap();
/// let v = normal.sample(&mut rand::thread_rng());
/// println!("{} is from a N(2, 9) distribution", v)
/// ```
///
/// [`StandardNormal`]: crate::StandardNormal
#[derive(Clone, Copy, Debug)]
pub struct Normal<N> {
mean: N,
std_dev: N,
}
/// Error type returned from `Normal::new` and `LogNormal::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `std_dev < 0` or `nan`.
StdDevTooSmall,
}
impl<N: Float> Normal<N>
where StandardNormal: Distribution<N>
{
/// Construct a new `Normal` distribution with the given mean and
/// standard deviation.
#[inline]
pub fn new(mean: N, std_dev: N) -> Result<Normal<N>, Error> {
if !(std_dev >= N::from(0.0)) {
return Err(Error::StdDevTooSmall);
}
Ok(Normal {
mean,
std_dev
})
}
}
impl<N: Float> Distribution<N> for Normal<N>
where StandardNormal: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
let n: N = rng.sample(StandardNormal);
self.mean + self.std_dev * n
}
}
/// The log-normal distribution `ln N(mean, std_dev**2)`.
///
/// If `X` is log-normal distributed, then `ln(X)` is `N(mean, std_dev**2)`
/// distributed.
///
/// # Example
///
/// ```
/// use rand_distr::{LogNormal, Distribution};
///
/// // mean 2, standard deviation 3
/// let log_normal = LogNormal::new(2.0, 3.0).unwrap();
/// let v = log_normal.sample(&mut rand::thread_rng());
/// println!("{} is from an ln N(2, 9) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
pub struct LogNormal<N> {
norm: Normal<N>
}
impl<N: Float> LogNormal<N>
where StandardNormal: Distribution<N>
{
/// Construct a new `LogNormal` distribution with the given mean
/// and standard deviation of the logarithm of the distribution.
#[inline]
pub fn new(mean: N, std_dev: N) -> Result<LogNormal<N>, Error> {
if !(std_dev >= N::from(0.0)) {
return Err(Error::StdDevTooSmall);
}
Ok(LogNormal { norm: Normal::new(mean, std_dev).unwrap() })
}
}
impl<N: Float> Distribution<N> for LogNormal<N>
where StandardNormal: Distribution<N>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> N {
self.norm.sample(rng).exp()
}
}
#[cfg(test)]
mod tests {
use crate::Distribution;
use super::{Normal, LogNormal};
#[test]
fn test_normal() {
let norm = Normal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(210);
for _ in 0..1000 {
norm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_normal_invalid_sd() {
Normal::new(10.0, -1.0).unwrap();
}
#[test]
fn test_log_normal() {
let lnorm = LogNormal::new(10.0, 10.0).unwrap();
let mut rng = crate::test::rng(211);
for _ in 0..1000 {
lnorm.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_log_normal_invalid_sd() {
LogNormal::new(10.0, -1.0).unwrap();
}
}