stacker/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! A library to help grow the stack when it runs out of space.
//!
//! This is an implementation of manually instrumented segmented stacks where points in a program's
//! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates
//! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate
//! if it does reach the end.
//!
//! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and
//! is switched to for the duration of a closure.
//!
//! For a set of lower-level primitives, consider the `psm` crate.
//!
//! # Examples
//!
//! ```
//! // Grow the stack if we are within the "red zone" of 32K, and if we allocate
//! // a new stack allocate 1MB of stack space.
//! //
//! // If we're already in bounds, just run the provided closure on current stack.
//! stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
//! // guaranteed to have at least 32K of stack
//! });
//! ```
#![allow(improper_ctypes)]
#[macro_use]
extern crate cfg_if;
extern crate libc;
#[cfg(windows)]
extern crate windows_sys;
#[macro_use]
extern crate psm;
mod backends;
use std::cell::Cell;
/// Grows the call stack if necessary.
///
/// This function is intended to be called at manually instrumented points in a program where
/// recursion is known to happen quite a bit. This function will check to see if we're within
/// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least
/// `stack_size` bytes.
///
/// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be
/// run on the current stack if there's space available.
#[inline(always)]
pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R {
// if we can't guess the remaining stack (unsupported on some platforms) we immediately grow
// the stack and then cache the new stack size (which we do know now because we allocated it.
let enough_space = match remaining_stack() {
Some(remaining) => remaining >= red_zone,
None => false,
};
if enough_space {
callback()
} else {
grow(stack_size, callback)
}
}
/// Always creates a new stack for the passed closure to run on.
/// The closure will still be on the same thread as the caller of `grow`.
/// This will allocate a new stack with at least `stack_size` bytes.
pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R {
// To avoid monomorphizing `_grow()` and everything it calls,
// we convert the generic callback to a dynamic one.
let mut opt_callback = Some(callback);
let mut ret = None;
let ret_ref = &mut ret;
// This wrapper around `callback` achieves two things:
// * It converts the `impl FnOnce` to a `dyn FnMut`.
// `dyn` because we want it to not be generic, and
// `FnMut` because we can't pass a `dyn FnOnce` around without boxing it.
// * It eliminates the generic return value, by writing it to the stack of this function.
// Otherwise the closure would have to return an unsized value, which isn't possible.
let dyn_callback: &mut dyn FnMut() = &mut || {
let taken_callback = opt_callback.take().unwrap();
*ret_ref = Some(taken_callback());
};
_grow(stack_size, dyn_callback);
ret.unwrap()
}
/// Queries the amount of remaining stack as interpreted by this library.
///
/// This function will return the amount of stack space left which will be used
/// to determine whether a stack switch should be made or not.
pub fn remaining_stack() -> Option<usize> {
let current_ptr = current_stack_ptr();
get_stack_limit().map(|limit| current_ptr - limit)
}
psm_stack_information!(
yes {
fn current_stack_ptr() -> usize {
psm::stack_pointer() as usize
}
}
no {
#[inline(always)]
fn current_stack_ptr() -> usize {
unsafe {
let mut x = std::mem::MaybeUninit::<u8>::uninit();
// Unlikely to be ever exercised. As a fallback we execute a volatile read to a
// local (to hopefully defeat the optimisations that would make this local a static
// global) and take its address. This way we get a very approximate address of the
// current frame.
x.as_mut_ptr().write_volatile(42);
x.as_ptr() as usize
}
}
}
);
thread_local! {
static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe {
backends::guess_os_stack_limit()
})
}
#[inline(always)]
fn get_stack_limit() -> Option<usize> {
STACK_LIMIT.with(|s| s.get())
}
#[inline(always)]
#[allow(unused)]
fn set_stack_limit(l: Option<usize>) {
STACK_LIMIT.with(|s| s.set(l))
}
psm_stack_manipulation! {
yes {
struct StackRestoreGuard {
new_stack: *mut std::ffi::c_void,
stack_bytes: usize,
old_stack_limit: Option<usize>,
}
impl StackRestoreGuard {
#[cfg(target_arch = "wasm32")]
unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard {
let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap();
let ptr = std::alloc::alloc(layout);
assert!(!ptr.is_null(), "unable to allocate stack");
StackRestoreGuard {
new_stack: ptr as *mut _,
stack_bytes,
old_stack_limit: get_stack_limit(),
}
}
#[cfg(not(target_arch = "wasm32"))]
unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard {
let new_stack = libc::mmap(
std::ptr::null_mut(),
stack_bytes,
libc::PROT_NONE,
libc::MAP_PRIVATE |
libc::MAP_ANON,
-1, // Some implementations assert fd = -1 if MAP_ANON is specified
0
);
assert_ne!(
new_stack,
libc::MAP_FAILED,
"mmap failed to allocate stack: {}",
std::io::Error::last_os_error()
);
let guard = StackRestoreGuard {
new_stack,
stack_bytes,
old_stack_limit: get_stack_limit(),
};
let above_guard_page = new_stack.add(page_size);
#[cfg(not(target_os = "openbsd"))]
let result = libc::mprotect(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE
);
#[cfg(target_os = "openbsd")]
let result = if libc::mmap(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK,
-1,
0) == above_guard_page {
0
} else {
-1
};
assert_ne!(
result,
-1,
"mprotect/mmap failed: {}",
std::io::Error::last_os_error()
);
guard
}
}
impl Drop for StackRestoreGuard {
fn drop(&mut self) {
#[cfg(target_arch = "wasm32")]
unsafe {
std::alloc::dealloc(
self.new_stack as *mut u8,
std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16),
);
}
#[cfg(not(target_arch = "wasm32"))]
unsafe {
// FIXME: check the error code and decide what to do with it.
// Perhaps a debug_assertion?
libc::munmap(self.new_stack, self.stack_bytes);
}
set_stack_limit(self.old_stack_limit);
}
}
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
// Calculate a number of pages we want to allocate for the new stack.
// For maximum portability we want to produce a stack that is aligned to a page and has
// a size that’s a multiple of page size. Furthermore we want to allocate two extras pages
// for the stack guard. To achieve that we do our calculations in number of pages and
// convert to bytes last.
let page_size = page_size();
let requested_pages = stack_size
.checked_add(page_size - 1)
.expect("unreasonably large stack requested") / page_size;
let stack_pages = std::cmp::max(1, requested_pages) + 2;
let stack_bytes = stack_pages.checked_mul(page_size)
.expect("unreasonably large stack requested");
// Next, there are a couple of approaches to how we allocate the new stack. We take the
// most obvious path and use `mmap`. We also `mprotect` a guard page into our
// allocation.
//
// We use a guard pattern to ensure we deallocate the allocated stack when we leave
// this function and also try to uphold various safety invariants required by `psm`
// (such as not unwinding from the callback we pass to it).
//
// Other than that this code has no meaningful gotchas.
unsafe {
let guard = StackRestoreGuard::new(stack_bytes, page_size);
let above_guard_page = guard.new_stack.add(page_size);
set_stack_limit(Some(above_guard_page as usize));
let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || {
std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err()
});
drop(guard);
if let Some(p) = panic {
std::panic::resume_unwind(p);
}
}
}
fn page_size() -> usize {
// FIXME: consider caching the page size.
#[cfg(not(target_arch = "wasm32"))]
unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize }
#[cfg(target_arch = "wasm32")]
{ 65536 }
}
}
no {
#[cfg(not(windows))]
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
let _ = stack_size;
callback();
}
#[cfg(windows)]
use backends::windows::_grow;
}
}