pub struct Gamma<N> { /* private fields */ }
Expand description
The Gamma distribution Gamma(shape, scale)
distribution.
The density function of this distribution is
f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
where Γ
is the Gamma function, k
is the shape and θ
is the
scale and both k
and θ
are strictly positive.
The algorithm used is that described by Marsaglia & Tsang 20001,
falling back to directly sampling from an Exponential for shape == 1
, and using the boosting technique described in that paper for
shape < 1
.
§Example
use rand_distr::{Distribution, Gamma};
let gamma = Gamma::new(2.0, 5.0).unwrap();
let v = gamma.sample(&mut rand::thread_rng());
println!("{} is from a Gamma(2, 5) distribution", v);
George Marsaglia and Wai Wan Tsang. 2000. “A Simple Method for Generating Gamma Variables” ACM Trans. Math. Softw. 26, 3 (September 2000), 363-372. DOI:10.1145/358407.358414 ↩
Implementations§
Trait Implementations§
Source§impl<N: Float> Distribution<N> for Gamma<N>
impl<N: Float> Distribution<N> for Gamma<N>
impl<N: Copy> Copy for Gamma<N>
Auto Trait Implementations§
impl<N> Freeze for Gamma<N>where
N: Freeze,
impl<N> RefUnwindSafe for Gamma<N>where
N: RefUnwindSafe,
impl<N> Send for Gamma<N>where
N: Send,
impl<N> Sync for Gamma<N>where
N: Sync,
impl<N> Unpin for Gamma<N>where
N: Unpin,
impl<N> UnwindSafe for Gamma<N>where
N: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more