Struct OrtOwnedTensor
pub struct OrtOwnedTensor<'t, 'm, T, D>{
pub(crate) tensor_ptr: *mut OrtValue,
array_view: ArrayBase<ViewRepr<&'t T>, D>,
memory_info: &'m MemoryInfo,
}
Expand description
Tensor containing data owned by the ONNX Runtime C library, used to return values from inference.
This tensor type is returned by the Session::run()
method.
It is not meant to be created directly.
The tensor hosts an ndarray::ArrayView
of the data on the C side. This allows manipulation on the Rust side using ndarray
without copying the data.
OrtOwnedTensor
implements the std::deref::Deref
trait for ergonomic access to
the underlying ndarray::ArrayView
.
Fields§
§tensor_ptr: *mut OrtValue
§array_view: ArrayBase<ViewRepr<&'t T>, D>
§memory_info: &'m MemoryInfo
Implementations§
Methods from Deref<Target = ArrayBase<ViewRepr<&'t T>, D>>§
Sourcepub fn len_of(&self, axis: Axis) -> usize
pub fn len_of(&self, axis: Axis) -> usize
Return the length of axis
.
The axis should be in the range Axis(
0 .. n )
where n is the
number of dimensions (axes) of the array.
Panics if the axis is out of bounds.
Sourcepub fn dim(&self) -> <D as Dimension>::Pattern
pub fn dim(&self) -> <D as Dimension>::Pattern
Return the shape of the array in its “pattern” form, an integer in the one-dimensional case, tuple in the n-dimensional cases and so on.
Sourcepub fn raw_dim(&self) -> D
pub fn raw_dim(&self) -> D
Return the shape of the array as it’s stored in the array.
This is primarily useful for passing to other ArrayBase
functions, such as when creating another array of the same
shape and dimensionality.
use ndarray::Array;
let a = Array::from_elem((2, 3), 5.);
// Create an array of zeros that's the same shape and dimensionality as `a`.
let b = Array::<f64, _>::zeros(a.raw_dim());
Sourcepub fn shape(&self) -> &[usize]
pub fn shape(&self) -> &[usize]
Return the shape of the array as a slice.
Note that you probably don’t want to use this to create an array of the
same shape as another array because creating an array with e.g.
Array::zeros()
using a shape of type &[usize]
results in a dynamic-dimensional array. If you want to create an array
that has the same shape and dimensionality as another array, use
.raw_dim()
instead:
use ndarray::{Array, Array2};
let a = Array2::<i32>::zeros((3, 4));
let shape = a.shape();
assert_eq!(shape, &[3, 4]);
// Since `a.shape()` returned `&[usize]`, we get an `ArrayD` instance:
let b = Array::zeros(shape);
assert_eq!(a.clone().into_dyn(), b);
// To get the same dimension type, use `.raw_dim()` instead:
let c = Array::zeros(a.raw_dim());
assert_eq!(a, c);
Sourcepub fn stride_of(&self, axis: Axis) -> isize
pub fn stride_of(&self, axis: Axis) -> isize
Return the stride of axis
.
The axis should be in the range Axis(
0 .. n )
where n is the
number of dimensions (axes) of the array.
Panics if the axis is out of bounds.
Sourcepub fn view(&self) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
pub fn view(&self) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
Return a read-only view of the array
Sourcepub fn to_owned(&self) -> ArrayBase<OwnedRepr<A>, D>
pub fn to_owned(&self) -> ArrayBase<OwnedRepr<A>, D>
Return an uniquely owned copy of the array.
If the input array is contiguous, then the output array will have the same
memory layout. Otherwise, the layout of the output array is unspecified.
If you need a particular layout, you can allocate a new array with the
desired memory layout and .assign()
the data.
Alternatively, you can collectan iterator, like this for a result in
standard layout:
Array::from_shape_vec(arr.raw_dim(), arr.iter().cloned().collect()).unwrap()
or this for a result in column-major (Fortran) layout:
Array::from_shape_vec(arr.raw_dim().f(), arr.t().iter().cloned().collect()).unwrap()
Return a shared ownership (copy on write) array, cloning the array elements if necessary.
Sourcepub fn first(&self) -> Option<&A>where
S: Data,
pub fn first(&self) -> Option<&A>where
S: Data,
Returns a reference to the first element of the array, or None
if it
is empty.
Sourcepub fn iter(&self) -> Iter<'_, A, D>where
S: Data,
pub fn iter(&self) -> Iter<'_, A, D>where
S: Data,
Return an iterator of references to the elements of the array.
Elements are visited in the logical order of the array, which is where the rightmost index is varying the fastest.
Iterator element type is &A
.
Sourcepub fn indexed_iter(&self) -> IndexedIter<'_, A, D>where
S: Data,
pub fn indexed_iter(&self) -> IndexedIter<'_, A, D>where
S: Data,
Return an iterator of indexes and references to the elements of the array.
Elements are visited in the logical order of the array, which is where the rightmost index is varying the fastest.
Iterator element type is (D::Pattern, &A)
.
See also Zip::indexed
Sourcepub fn slice_axis(
&self,
axis: Axis,
indices: Slice,
) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
pub fn slice_axis(
&self,
axis: Axis,
indices: Slice,
) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
Return a view of the array, sliced along the specified axis.
Panics if an index is out of bounds or step size is zero.
Panics if axis
is out of bounds.
Sourcepub fn slice_each_axis<F>(&self, f: F) -> ArrayBase<ViewRepr<&A>, D>
pub fn slice_each_axis<F>(&self, f: F) -> ArrayBase<ViewRepr<&A>, D>
Return a view of a slice of the array, with a closure specifying the slice for each axis.
This is especially useful for code which is generic over the dimensionality of the array.
Panics if an index is out of bounds or step size is zero.
Sourcepub fn get<I>(&self, index: I) -> Option<&A>
pub fn get<I>(&self, index: I) -> Option<&A>
Return a reference to the element at index
, or return None
if the index is out of bounds.
Arrays also support indexing syntax: array[index]
.
use ndarray::arr2;
let a = arr2(&[[1., 2.],
[3., 4.]]);
assert!(
a.get((0, 1)) == Some(&2.) &&
a.get((0, 2)) == None &&
a[(0, 1)] == 2. &&
a[[0, 1]] == 2.
);
Sourcepub unsafe fn uget<I>(&self, index: I) -> &A
pub unsafe fn uget<I>(&self, index: I) -> &A
Perform unchecked array indexing.
Return a reference to the element at index
.
Note: only unchecked for non-debug builds of ndarray.
§Safety
The caller must ensure that the index is in-bounds.
Sourcepub fn index_axis(
&self,
axis: Axis,
index: usize,
) -> ArrayBase<ViewRepr<&A>, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
pub fn index_axis(
&self,
axis: Axis,
index: usize,
) -> ArrayBase<ViewRepr<&A>, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
Returns a view restricted to index
along the axis, with the axis
removed.
See Subviews for full documentation.
Panics if axis
or index
is out of bounds.
use ndarray::{arr2, ArrayView, Axis};
let a = arr2(&[[1., 2. ], // ... axis 0, row 0
[3., 4. ], // --- axis 0, row 1
[5., 6. ]]); // ... axis 0, row 2
// . \
// . axis 1, column 1
// axis 1, column 0
assert!(
a.index_axis(Axis(0), 1) == ArrayView::from(&[3., 4.]) &&
a.index_axis(Axis(1), 1) == ArrayView::from(&[2., 4., 6.])
);
Sourcepub fn select(
&self,
axis: Axis,
indices: &[usize],
) -> ArrayBase<OwnedRepr<A>, D>
pub fn select( &self, axis: Axis, indices: &[usize], ) -> ArrayBase<OwnedRepr<A>, D>
Along axis
, select arbitrary subviews corresponding to indices
and and copy them into a new array.
Panics if axis
or an element of indices
is out of bounds.
use ndarray::{arr2, Axis};
let x = arr2(&[[0., 1.],
[2., 3.],
[4., 5.],
[6., 7.],
[8., 9.]]);
let r = x.select(Axis(0), &[0, 4, 3]);
assert!(
r == arr2(&[[0., 1.],
[8., 9.],
[6., 7.]])
);
Sourcepub fn rows(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
pub fn rows(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
Return a producer and iterable that traverses over the generalized rows of the array. For a 2D array these are the regular rows.
This is equivalent to .lanes(Axis(n - 1))
where n is self.ndim()
.
For an array of dimensions a × b × c × … × l × m it has a × b × c × … × l rows each of length m.
For example, in a 2 × 2 × 3 array, each row is 3 elements long and there are 2 × 2 = 4 rows in total.
Iterator element is ArrayView1<A>
(1D array view).
use ndarray::{arr3, Axis, arr1};
let a = arr3(&[[[ 0, 1, 2], // -- row 0, 0
[ 3, 4, 5]], // -- row 0, 1
[[ 6, 7, 8], // -- row 1, 0
[ 9, 10, 11]]]); // -- row 1, 1
// `rows` will yield the four generalized rows of the array.
for row in a.rows() {
/* loop body */
}
pub fn genrows(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
Sourcepub fn columns(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
pub fn columns(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
Return a producer and iterable that traverses over the generalized columns of the array. For a 2D array these are the regular columns.
This is equivalent to .lanes(Axis(0))
.
For an array of dimensions a × b × c × … × l × m it has b × c × … × l × m columns each of length a.
For example, in a 2 × 2 × 3 array, each column is 2 elements long and there are 2 × 3 = 6 columns in total.
Iterator element is ArrayView1<A>
(1D array view).
use ndarray::{arr3, Axis, arr1};
// The generalized columns of a 3D array:
// are directed along the 0th axis: 0 and 6, 1 and 7 and so on...
let a = arr3(&[[[ 0, 1, 2], [ 3, 4, 5]],
[[ 6, 7, 8], [ 9, 10, 11]]]);
// Here `columns` will yield the six generalized columns of the array.
for row in a.columns() {
/* loop body */
}
Sourcepub fn gencolumns(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
👎Deprecated since 0.15.0: Renamed to .columns()
pub fn gencolumns(&self) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
Return a producer and iterable that traverses over the generalized columns of the array. For a 2D array these are the regular columns.
Renamed to .columns()
Sourcepub fn lanes(&self, axis: Axis) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
pub fn lanes(&self, axis: Axis) -> Lanes<'_, A, <D as Dimension>::Smaller>where
S: Data,
Return a producer and iterable that traverses over all 1D lanes
pointing in the direction of axis
.
When pointing in the direction of the first axis, they are columns, in the direction of the last axis rows; in general they are all lanes and are one dimensional.
Iterator element is ArrayView1<A>
(1D array view).
use ndarray::{arr3, aview1, Axis};
let a = arr3(&[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]]]);
let inner0 = a.lanes(Axis(0));
let inner1 = a.lanes(Axis(1));
let inner2 = a.lanes(Axis(2));
// The first lane for axis 0 is [0, 6]
assert_eq!(inner0.into_iter().next().unwrap(), aview1(&[0, 6]));
// The first lane for axis 1 is [0, 3]
assert_eq!(inner1.into_iter().next().unwrap(), aview1(&[0, 3]));
// The first lane for axis 2 is [0, 1, 2]
assert_eq!(inner2.into_iter().next().unwrap(), aview1(&[0, 1, 2]));
Sourcepub fn outer_iter(&self) -> AxisIter<'_, A, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
pub fn outer_iter(&self) -> AxisIter<'_, A, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
Return an iterator that traverses over the outermost dimension and yields each subview.
This is equivalent to .axis_iter(Axis(0))
.
Iterator element is ArrayView<A, D::Smaller>
(read-only array view).
Sourcepub fn axis_iter(
&self,
axis: Axis,
) -> AxisIter<'_, A, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
pub fn axis_iter(
&self,
axis: Axis,
) -> AxisIter<'_, A, <D as Dimension>::Smaller>where
S: Data,
D: RemoveAxis,
Return an iterator that traverses over axis
and yields each subview along it.
For example, in a 3 × 4 × 5 array, with axis
equal to Axis(2)
,
the iterator element
is a 3 × 4 subview (and there are 5 in total), as shown
in the picture below.
Iterator element is ArrayView<A, D::Smaller>
(read-only array view).
See Subviews for full documentation.
Panics if axis
is out of bounds.
Sourcepub fn axis_chunks_iter(
&self,
axis: Axis,
size: usize,
) -> AxisChunksIter<'_, A, D>where
S: Data,
pub fn axis_chunks_iter(
&self,
axis: Axis,
size: usize,
) -> AxisChunksIter<'_, A, D>where
S: Data,
Return an iterator that traverses over axis
by chunks of size
,
yielding non-overlapping views along that axis.
Iterator element is ArrayView<A, D>
The last view may have less elements if size
does not divide
the axis’ dimension.
Panics if axis
is out of bounds or if size
is zero.
use ndarray::Array;
use ndarray::{arr3, Axis};
use std::iter::FromIterator;
let a = Array::from_iter(0..28).into_shape((2, 7, 2)).unwrap();
let mut iter = a.axis_chunks_iter(Axis(1), 2);
// first iteration yields a 2 × 2 × 2 view
assert_eq!(iter.next().unwrap(),
arr3(&[[[ 0, 1], [ 2, 3]],
[[14, 15], [16, 17]]]));
// however the last element is a 2 × 1 × 2 view since 7 % 2 == 1
assert_eq!(iter.next_back().unwrap(), arr3(&[[[12, 13]],
[[26, 27]]]));
Sourcepub fn exact_chunks<E>(&self, chunk_size: E) -> ExactChunks<'_, A, D>where
E: IntoDimension<Dim = D>,
S: Data,
pub fn exact_chunks<E>(&self, chunk_size: E) -> ExactChunks<'_, A, D>where
E: IntoDimension<Dim = D>,
S: Data,
Return an exact chunks producer (and iterable).
It produces the whole chunks of a given n-dimensional chunk size, skipping the remainder along each dimension that doesn’t fit evenly.
The produced element is a ArrayView<A, D>
with exactly the dimension
chunk_size
.
Panics if any dimension of chunk_size
is zero
(Panics if D
is IxDyn
and chunk_size
does not match the
number of array axes.)
Sourcepub fn windows<E>(&self, window_size: E) -> Windows<'_, A, D>where
E: IntoDimension<Dim = D>,
S: Data,
pub fn windows<E>(&self, window_size: E) -> Windows<'_, A, D>where
E: IntoDimension<Dim = D>,
S: Data,
Return a window producer and iterable.
The windows are all distinct overlapping views of size window_size
that fit into the array’s shape.
This produces no elements if the window size is larger than the actual array size along any axis.
The produced element is an ArrayView<A, D>
with exactly the dimension
window_size
.
Panics if any dimension of window_size
is zero.
(Panics if D
is IxDyn
and window_size
does not match the
number of array axes.)
This is an illustration of the 2×2 windows in a 3×4 array:
──▶ Axis(1)
│ ┏━━━━━┳━━━━━┱─────┬─────┐ ┌─────┲━━━━━┳━━━━━┱─────┐ ┌─────┬─────┲━━━━━┳━━━━━┓
▼ ┃ a₀₀ ┃ a₀₁ ┃ │ │ │ ┃ a₀₁ ┃ a₀₂ ┃ │ │ │ ┃ a₀₂ ┃ a₀₃ ┃
Axis(0) ┣━━━━━╋━━━━━╉─────┼─────┤ ├─────╊━━━━━╋━━━━━╉─────┤ ├─────┼─────╊━━━━━╋━━━━━┫
┃ a₁₀ ┃ a₁₁ ┃ │ │ │ ┃ a₁₁ ┃ a₁₂ ┃ │ │ │ ┃ a₁₂ ┃ a₁₃ ┃
┡━━━━━╇━━━━━╃─────┼─────┤ ├─────╄━━━━━╇━━━━━╃─────┤ ├─────┼─────╄━━━━━╇━━━━━┩
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
└─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┘
┌─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │
┢━━━━━╈━━━━━╅─────┼─────┤ ├─────╆━━━━━╈━━━━━╅─────┤ ├─────┼─────╆━━━━━╈━━━━━┪
┃ a₁₀ ┃ a₁₁ ┃ │ │ │ ┃ a₁₁ ┃ a₁₂ ┃ │ │ │ ┃ a₁₂ ┃ a₁₃ ┃
┣━━━━━╋━━━━━╉─────┼─────┤ ├─────╊━━━━━╋━━━━━╉─────┤ ├─────┼─────╊━━━━━╋━━━━━┫
┃ a₂₀ ┃ a₂₁ ┃ │ │ │ ┃ a₂₁ ┃ a₂₂ ┃ │ │ │ ┃ a₂₂ ┃ a₂₃ ┃
┗━━━━━┻━━━━━┹─────┴─────┘ └─────┺━━━━━┻━━━━━┹─────┘ └─────┴─────┺━━━━━┻━━━━━┛
Sourcepub fn diag(&self) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
pub fn diag(&self) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
Return a view of the diagonal elements of the array.
The diagonal is simply the sequence indexed by (0, 0, .., 0), (1, 1, …, 1) etc as long as all axes have elements.
Sourcepub fn is_standard_layout(&self) -> bool
pub fn is_standard_layout(&self) -> bool
Return true
if the array data is laid out in contiguous “C order” in
memory (where the last index is the most rapidly varying).
Return false
otherwise, i.e. the array is possibly not
contiguous in memory, it has custom strides, etc.
Sourcepub fn as_standard_layout(&self) -> ArrayBase<CowRepr<'_, A>, D>
pub fn as_standard_layout(&self) -> ArrayBase<CowRepr<'_, A>, D>
Return a standard-layout array containing the data, cloning if necessary.
If self
is in standard layout, a COW view of the data is returned
without cloning. Otherwise, the data is cloned, and the returned array
owns the cloned data.
use ndarray::Array2;
let standard = Array2::<f64>::zeros((3, 4));
assert!(standard.is_standard_layout());
let cow_view = standard.as_standard_layout();
assert!(cow_view.is_view());
assert!(cow_view.is_standard_layout());
let fortran = standard.reversed_axes();
assert!(!fortran.is_standard_layout());
let cow_owned = fortran.as_standard_layout();
assert!(cow_owned.is_owned());
assert!(cow_owned.is_standard_layout());
Sourcepub fn as_ptr(&self) -> *const A
pub fn as_ptr(&self) -> *const A
Return a pointer to the first element in the array.
Raw access to array elements needs to follow the strided indexing scheme: an element at multi-index I in an array with strides S is located at offset
Σ0 ≤ k < d Ik × Sk
where d is self.ndim()
.
Sourcepub fn raw_view(&self) -> ArrayBase<RawViewRepr<*const A>, D>
pub fn raw_view(&self) -> ArrayBase<RawViewRepr<*const A>, D>
Return a raw view of the array.
Sourcepub fn as_slice(&self) -> Option<&[A]>where
S: Data,
pub fn as_slice(&self) -> Option<&[A]>where
S: Data,
Return the array’s data as a slice, if it is contiguous and in standard order.
Return None
otherwise.
If this function returns Some(_)
, then the element order in the slice
corresponds to the logical order of the array’s elements.
Sourcepub fn as_slice_memory_order(&self) -> Option<&[A]>where
S: Data,
pub fn as_slice_memory_order(&self) -> Option<&[A]>where
S: Data,
Return the array’s data as a slice if it is contiguous,
return None
otherwise.
If this function returns Some(_)
, then the elements in the slice
have whatever order the elements have in memory.
Sourcepub fn reshape<E>(&self, shape: E) -> ArrayBase<S, <E as IntoDimension>::Dim>
pub fn reshape<E>(&self, shape: E) -> ArrayBase<S, <E as IntoDimension>::Dim>
Note: Reshape is for ArcArray
only. Use .into_shape()
for
other arrays and array views.
Transform the array into shape
; any shape with the same number of
elements is accepted.
May clone all elements if needed to arrange elements in standard layout (and break sharing).
Panics if shapes are incompatible.
use ndarray::{rcarr1, rcarr2};
assert!(
rcarr1(&[1., 2., 3., 4.]).reshape((2, 2))
== rcarr2(&[[1., 2.],
[3., 4.]])
);
Sourcepub fn broadcast<E>(
&self,
dim: E,
) -> Option<ArrayBase<ViewRepr<&A>, <E as IntoDimension>::Dim>>where
E: IntoDimension,
S: Data,
pub fn broadcast<E>(
&self,
dim: E,
) -> Option<ArrayBase<ViewRepr<&A>, <E as IntoDimension>::Dim>>where
E: IntoDimension,
S: Data,
Act like a larger size and/or shape array by broadcasting into a larger shape, if possible.
Return None
if shapes can not be broadcast together.
Background
- Two axes are compatible if they are equal, or one of them is 1.
- In this instance, only the axes of the smaller side (self) can be 1.
Compare axes beginning with the last axis of each shape.
For example (1, 2, 4) can be broadcast into (7, 6, 2, 4) because its axes are either equal or 1 (or missing); while (2, 2) can not be broadcast into (2, 4).
The implementation creates a view with strides set to zero for the axes that are to be repeated.
The broadcasting documentation for Numpy has more information.
use ndarray::{aview1, aview2};
assert!(
aview1(&[1., 0.]).broadcast((10, 2)).unwrap()
== aview2(&[[1., 0.]; 10])
);
Sourcepub fn t(&self) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
pub fn t(&self) -> ArrayBase<ViewRepr<&A>, D>where
S: Data,
Return a transposed view of the array.
This is a shorthand for self.view().reversed_axes()
.
See also the more general methods .reversed_axes()
and .swap_axes()
.
Sourcepub fn max_stride_axis(&self) -> Axis
pub fn max_stride_axis(&self) -> Axis
Return the axis with the greatest stride (by absolute value), preferring axes with len > 1.
Sourcepub fn assign_to<P>(&self, to: P)
pub fn assign_to<P>(&self, to: P)
Perform an elementwise assigment of values cloned from self
into array or producer to
.
The destination to
can be another array or a producer of assignable elements.
AssignElem
determines how elements are assigned.
Panics if shapes disagree.
Sourcepub fn fold<'a, F, B>(&'a self, init: B, f: F) -> B
pub fn fold<'a, F, B>(&'a self, init: B, f: F) -> B
Traverse the array elements and apply a fold, returning the resulting value.
Elements are visited in arbitrary order.
Sourcepub fn map<'a, B, F>(&'a self, f: F) -> ArrayBase<OwnedRepr<B>, D>
pub fn map<'a, B, F>(&'a self, f: F) -> ArrayBase<OwnedRepr<B>, D>
Call f
by reference on each element and create a new array
with the new values.
Elements are visited in arbitrary order.
Return an array with the same shape as self
.
use ndarray::arr2;
let a = arr2(&[[ 0., 1.],
[-1., 2.]]);
assert!(
a.map(|x| *x >= 1.0)
== arr2(&[[false, true],
[false, true]])
);
Sourcepub fn mapv<B, F>(&self, f: F) -> ArrayBase<OwnedRepr<B>, D>
pub fn mapv<B, F>(&self, f: F) -> ArrayBase<OwnedRepr<B>, D>
Call f
by value on each element and create a new array
with the new values.
Elements are visited in arbitrary order.
Return an array with the same shape as self
.
use ndarray::arr2;
let a = arr2(&[[ 0., 1.],
[-1., 2.]]);
assert!(
a.mapv(f32::abs) == arr2(&[[0., 1.],
[1., 2.]])
);
Sourcepub fn for_each<'a, F>(&'a self, f: F)
pub fn for_each<'a, F>(&'a self, f: F)
Call f
for each element in the array.
Elements are visited in arbitrary order.
Sourcepub fn visit<'a, F>(&'a self, f: F)
👎Deprecated since 0.15.0: Renamed to .for_each()
pub fn visit<'a, F>(&'a self, f: F)
Visit each element in the array by calling f
by reference
on each element.
Elements are visited in arbitrary order.
Sourcepub fn fold_axis<B, F>(
&self,
axis: Axis,
init: B,
fold: F,
) -> ArrayBase<OwnedRepr<B>, <D as Dimension>::Smaller>
pub fn fold_axis<B, F>( &self, axis: Axis, init: B, fold: F, ) -> ArrayBase<OwnedRepr<B>, <D as Dimension>::Smaller>
Fold along an axis.
Combine the elements of each subview with the previous using the fold
function and initial value init
.
Return the result as an Array
.
Panics if axis
is out of bounds.
Sourcepub fn map_axis<'a, B, F>(
&'a self,
axis: Axis,
mapping: F,
) -> ArrayBase<OwnedRepr<B>, <D as Dimension>::Smaller>
pub fn map_axis<'a, B, F>( &'a self, axis: Axis, mapping: F, ) -> ArrayBase<OwnedRepr<B>, <D as Dimension>::Smaller>
Reduce the values along an axis into just one value, producing a new array with one less dimension.
Elements are visited in arbitrary order.
Return the result as an Array
.
Panics if axis
is out of bounds.
Sourcepub fn to_vec(&self) -> Vec<A>
pub fn to_vec(&self) -> Vec<A>
Return an vector with the elements of the one-dimensional array.
Sourcepub fn row(&self, index: usize) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
pub fn row(&self, index: usize) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
Return an array view of row index
.
Panics if index
is out of bounds.
use ndarray::array;
let array = array![[1., 2.], [3., 4.]];
assert_eq!(array.row(0), array![1., 2.]);
Sourcepub fn nrows(&self) -> usize
pub fn nrows(&self) -> usize
Return the number of rows (length of Axis(0)
) in the two-dimensional array.
use ndarray::array;
let array = array![[1., 2.], [3., 4.]];
assert_eq!(array.nrows(), 2usize);
Sourcepub fn column(&self, index: usize) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
pub fn column(&self, index: usize) -> ArrayBase<ViewRepr<&A>, Dim<[usize; 1]>>where
S: Data,
Return an array view of column index
.
Panics if index
is out of bounds.
use ndarray::array;
let array = array![[1., 2.], [3., 4.]];
assert_eq!(array.column(0), array![1., 3.]);
Sourcepub fn ncols(&self) -> usize
pub fn ncols(&self) -> usize
Return the number of columns (length of Axis(1)
) in the two-dimensional array.
use ndarray::array;
let array = array![[1., 2.], [3., 4.]];
assert_eq!(array.ncols(), 2usize);
Sourcepub fn is_square(&self) -> bool
pub fn is_square(&self) -> bool
Return true if the array is square, false otherwise.
§Examples
Sqaure:
use ndarray::array;
let array = array![[1., 2.], [3., 4.]];
assert!(array.is_square());
Not sqaure:
use ndarray::array;
let array = array![[1., 2., 5.], [3., 4., 6.]];
assert!(!array.is_square());
Sourcepub fn sum(&self) -> A
pub fn sum(&self) -> A
Return the sum of all elements in the array.
use ndarray::arr2;
let a = arr2(&[[1., 2.],
[3., 4.]]);
assert_eq!(a.sum(), 10.);
Sourcepub fn scalar_sum(&self) -> A
👎Deprecated since 0.15.0: renamed to sum
pub fn scalar_sum(&self) -> A
sum
Return the sum of all elements in the array.
This method has been renamed to .sum()
Sourcepub fn mean(&self) -> Option<A>
pub fn mean(&self) -> Option<A>
Returns the arithmetic mean x̅ of all elements in the array:
1 n
x̅ = ― ∑ xᵢ
n i=1
If the array is empty, None
is returned.
Panics if A::from_usize()
fails to convert the number of elements in the array.
Sourcepub fn product(&self) -> A
pub fn product(&self) -> A
Return the product of all elements in the array.
use ndarray::arr2;
let a = arr2(&[[1., 2.],
[3., 4.]]);
assert_eq!(a.product(), 24.);
Sourcepub fn var(&self, ddof: A) -> Awhere
A: Float + FromPrimitive,
pub fn var(&self, ddof: A) -> Awhere
A: Float + FromPrimitive,
Return variance of elements in the array.
The variance is computed using the Welford one-pass algorithm.
The parameter ddof
specifies the “delta degrees of freedom”. For
example, to calculate the population variance, use ddof = 0
, or to
calculate the sample variance, use ddof = 1
.
The variance is defined as:
1 n
variance = ―――――――― ∑ (xᵢ - x̅)²
n - ddof i=1
where
1 n
x̅ = ― ∑ xᵢ
n i=1
and n
is the length of the array.
Panics if ddof
is less than zero or greater than n
§Example
use ndarray::array;
use approx::assert_abs_diff_eq;
let a = array![1., -4.32, 1.14, 0.32];
let var = a.var(1.);
assert_abs_diff_eq!(var, 6.7331, epsilon = 1e-4);
Sourcepub fn std(&self, ddof: A) -> Awhere
A: Float + FromPrimitive,
pub fn std(&self, ddof: A) -> Awhere
A: Float + FromPrimitive,
Return standard deviation of elements in the array.
The standard deviation is computed from the variance using the Welford one-pass algorithm.
The parameter ddof
specifies the “delta degrees of freedom”. For
example, to calculate the population standard deviation, use ddof = 0
,
or to calculate the sample standard deviation, use ddof = 1
.
The standard deviation is defined as:
⎛ 1 n ⎞
stddev = sqrt ⎜ ―――――――― ∑ (xᵢ - x̅)²⎟
⎝ n - ddof i=1 ⎠
where
1 n
x̅ = ― ∑ xᵢ
n i=1
and n
is the length of the array.
Panics if ddof
is less than zero or greater than n
§Example
use ndarray::array;
use approx::assert_abs_diff_eq;
let a = array![1., -4.32, 1.14, 0.32];
let stddev = a.std(1.);
assert_abs_diff_eq!(stddev, 2.59483, epsilon = 1e-4);
Sourcepub fn sum_axis(
&self,
axis: Axis,
) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
pub fn sum_axis( &self, axis: Axis, ) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
Return sum along axis
.
use ndarray::{aview0, aview1, arr2, Axis};
let a = arr2(&[[1., 2., 3.],
[4., 5., 6.]]);
assert!(
a.sum_axis(Axis(0)) == aview1(&[5., 7., 9.]) &&
a.sum_axis(Axis(1)) == aview1(&[6., 15.]) &&
a.sum_axis(Axis(0)).sum_axis(Axis(0)) == aview0(&21.)
);
Panics if axis
is out of bounds.
Sourcepub fn mean_axis(
&self,
axis: Axis,
) -> Option<ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>>
pub fn mean_axis( &self, axis: Axis, ) -> Option<ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>>
Return mean along axis
.
Return None
if the length of the axis is zero.
Panics if axis
is out of bounds or if A::from_usize()
fails for the axis length.
use ndarray::{aview0, aview1, arr2, Axis};
let a = arr2(&[[1., 2., 3.],
[4., 5., 6.]]);
assert!(
a.mean_axis(Axis(0)).unwrap() == aview1(&[2.5, 3.5, 4.5]) &&
a.mean_axis(Axis(1)).unwrap() == aview1(&[2., 5.]) &&
a.mean_axis(Axis(0)).unwrap().mean_axis(Axis(0)).unwrap() == aview0(&3.5)
);
Sourcepub fn var_axis(
&self,
axis: Axis,
ddof: A,
) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
pub fn var_axis( &self, axis: Axis, ddof: A, ) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
Return variance along axis
.
The variance is computed using the Welford one-pass algorithm.
The parameter ddof
specifies the “delta degrees of freedom”. For
example, to calculate the population variance, use ddof = 0
, or to
calculate the sample variance, use ddof = 1
.
The variance is defined as:
1 n
variance = ―――――――― ∑ (xᵢ - x̅)²
n - ddof i=1
where
1 n
x̅ = ― ∑ xᵢ
n i=1
and n
is the length of the axis.
Panics if ddof
is less than zero or greater than n
, if axis
is out of bounds, or if A::from_usize()
fails for any any of the
numbers in the range 0..=n
.
§Example
use ndarray::{aview1, arr2, Axis};
let a = arr2(&[[1., 2.],
[3., 4.],
[5., 6.]]);
let var = a.var_axis(Axis(0), 1.);
assert_eq!(var, aview1(&[4., 4.]));
Sourcepub fn std_axis(
&self,
axis: Axis,
ddof: A,
) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
pub fn std_axis( &self, axis: Axis, ddof: A, ) -> ArrayBase<OwnedRepr<A>, <D as Dimension>::Smaller>
Return standard deviation along axis
.
The standard deviation is computed from the variance using the Welford one-pass algorithm.
The parameter ddof
specifies the “delta degrees of freedom”. For
example, to calculate the population standard deviation, use ddof = 0
,
or to calculate the sample standard deviation, use ddof = 1
.
The standard deviation is defined as:
⎛ 1 n ⎞
stddev = sqrt ⎜ ―――――――― ∑ (xᵢ - x̅)²⎟
⎝ n - ddof i=1 ⎠
where
1 n
x̅ = ― ∑ xᵢ
n i=1
and n
is the length of the axis.
Panics if ddof
is less than zero or greater than n
, if axis
is out of bounds, or if A::from_usize()
fails for any any of the
numbers in the range 0..=n
.
§Example
use ndarray::{aview1, arr2, Axis};
let a = arr2(&[[1., 2.],
[3., 4.],
[5., 6.]]);
let stddev = a.std_axis(Axis(0), 1.);
assert_eq!(stddev, aview1(&[2., 2.]));
Sourcepub fn dot<Rhs>(
&self,
rhs: &Rhs,
) -> <ArrayBase<S, Dim<[usize; 1]>> as Dot<Rhs>>::Output
pub fn dot<Rhs>( &self, rhs: &Rhs, ) -> <ArrayBase<S, Dim<[usize; 1]>> as Dot<Rhs>>::Output
Perform dot product or matrix multiplication of arrays self
and rhs
.
Rhs
may be either a one-dimensional or a two-dimensional array.
If Rhs
is one-dimensional, then the operation is a vector dot
product, which is the sum of the elementwise products (no conjugation
of complex operands, and thus not their inner product). In this case,
self
and rhs
must be the same length.
If Rhs
is two-dimensional, then the operation is matrix
multiplication, where self
is treated as a row vector. In this case,
if self
is shape M, then rhs
is shape M × N and the result is
shape N.
Panics if the array shapes are incompatible.
Note: If enabled, uses blas dot
for elements of f32, f64
when memory
layout allows.
Sourcepub fn dot<Rhs>(
&self,
rhs: &Rhs,
) -> <ArrayBase<S, Dim<[usize; 2]>> as Dot<Rhs>>::Output
pub fn dot<Rhs>( &self, rhs: &Rhs, ) -> <ArrayBase<S, Dim<[usize; 2]>> as Dot<Rhs>>::Output
Perform matrix multiplication of rectangular arrays self
and rhs
.
Rhs
may be either a one-dimensional or a two-dimensional array.
If Rhs is two-dimensional, they array shapes must agree in the way that
if self
is M × N, then rhs
is N × K.
Return a result array with shape M × K.
Panics if shapes are incompatible or the number of elements in the
result would overflow isize
.
Note: If enabled, uses blas gemv/gemm
for elements of f32, f64
when memory layout allows. The default matrixmultiply backend
is otherwise used for f32, f64
for all memory layouts.
use ndarray::arr2;
let a = arr2(&[[1., 2.],
[0., 1.]]);
let b = arr2(&[[1., 2.],
[2., 3.]]);
assert!(
a.dot(&b) == arr2(&[[5., 8.],
[2., 3.]])
);
Sourcepub fn to_slice(&self) -> Option<&'a [A]>
pub fn to_slice(&self) -> Option<&'a [A]>
Return the array’s data as a slice, if it is contiguous and in standard order.
Return None
otherwise.
Note that while the method is similar to ArrayBase::as_slice()
, this method tranfers
the view’s lifetime to the slice, so it is a bit more powerful.
Trait Implementations§
Source§impl<'t, 'm, T, D> Debug for OrtOwnedTensor<'t, 'm, T, D>
impl<'t, 'm, T, D> Debug for OrtOwnedTensor<'t, 'm, T, D>
Source§impl<'t, 'm, T, D> Deref for OrtOwnedTensor<'t, 'm, T, D>
impl<'t, 'm, T, D> Deref for OrtOwnedTensor<'t, 'm, T, D>
Auto Trait Implementations§
impl<'t, 'm, T, D> Freeze for OrtOwnedTensor<'t, 'm, T, D>where
D: Freeze,
impl<'t, 'm, T, D> RefUnwindSafe for OrtOwnedTensor<'t, 'm, T, D>where
D: RefUnwindSafe,
T: RefUnwindSafe,
impl<'t, 'm, T, D> !Send for OrtOwnedTensor<'t, 'm, T, D>
impl<'t, 'm, T, D> !Sync for OrtOwnedTensor<'t, 'm, T, D>
impl<'t, 'm, T, D> Unpin for OrtOwnedTensor<'t, 'm, T, D>where
D: Unpin,
impl<'t, 'm, T, D> UnwindSafe for OrtOwnedTensor<'t, 'm, T, D>where
D: UnwindSafe,
T: RefUnwindSafe,
Blanket Implementations§
Source§impl<Src, Scheme> ApproxFrom<Src, Scheme> for Srcwhere
Scheme: ApproxScheme,
impl<Src, Scheme> ApproxFrom<Src, Scheme> for Srcwhere
Scheme: ApproxScheme,
Source§fn approx_from(src: Src) -> Result<Src, <Src as ApproxFrom<Src, Scheme>>::Err>
fn approx_from(src: Src) -> Result<Src, <Src as ApproxFrom<Src, Scheme>>::Err>
Source§impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Srcwhere
Dst: ApproxFrom<Src, Scheme>,
Scheme: ApproxScheme,
impl<Dst, Src, Scheme> ApproxInto<Dst, Scheme> for Srcwhere
Dst: ApproxFrom<Src, Scheme>,
Scheme: ApproxScheme,
Source§type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
type Err = <Dst as ApproxFrom<Src, Scheme>>::Err
Source§fn approx_into(self) -> Result<Dst, <Src as ApproxInto<Dst, Scheme>>::Err>
fn approx_into(self) -> Result<Dst, <Src as ApproxInto<Dst, Scheme>>::Err>
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T, Dst> ConvAsUtil<Dst> for T
impl<T, Dst> ConvAsUtil<Dst> for T
Source§impl<T> ConvUtil for T
impl<T> ConvUtil for T
Source§fn approx_as<Dst>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst>,
fn approx_as<Dst>(self) -> Result<Dst, Self::Err>where
Self: Sized + ApproxInto<Dst>,
Source§fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err>
fn approx_as_by<Dst, Scheme>(self) -> Result<Dst, Self::Err>
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoSql for T
impl<T> IntoSql for T
Source§fn into_sql<T>(self) -> Self::Expressionwhere
Self: Sized + AsExpression<T>,
fn into_sql<T>(self) -> Self::Expressionwhere
Self: Sized + AsExpression<T>,
self
to an expression for Diesel’s query builder. Read moreSource§fn as_sql<'a, T>(&'a self) -> <&'a Self as AsExpression<T>>::Expressionwhere
&'a Self: AsExpression<T>,
fn as_sql<'a, T>(&'a self) -> <&'a Self as AsExpression<T>>::Expressionwhere
&'a Self: AsExpression<T>,
&self
to an expression for Diesel’s query builder. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.